Imbalance of Essential Metals in Traumatic Brain Injury and Its Possible Link with Disorders of Consciousness.

Int J Mol Sci

Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy.

Published: April 2023

Dysfunction of the complex cerebral networks underlying wakefulness and awareness is responsible for Disorders of Consciousness (DoC). Traumatic Brain Injury (TBI) is a common cause of DoC, and it is responsible for a multi-dimensional pathological cascade that affects the proper functioning of the brainstem and brain consciousness pathways. Iron (Fe), Zinc (Zn), and Copper (Cu) have a role in the neurophysiology of both the ascending reticular activating system, a multi-neurotransmitter network located in the brainstem that is crucial for consciousness, and several brain regions. We aimed to summarize the role of these essential metals in TBI and its possible link with consciousness alterations. We found that TBI alters many neuronal molecular mechanisms involving essential metals, causing neurodegeneration, neural apoptosis, synaptic dysfunction, oxidative stress, and inflammation. This final pattern resembles that described for Alzheimer's disease (AD) and other neurological and psychiatric diseases. Furthermore, we found that amantadine, zolpidem, and transcranial direct current stimulation (tDCS)-the most used treatments for DoC recovery-seem to have an effect on essential metals-related pathways and that Zn might be a promising new therapeutic approach. This review summarizes the neurophysiology of essential metals in the brain structures of consciousness and focuses on the mechanisms underlying their imbalance following TBI, suggesting their possible role in DoC. The scenario supports further studies aimed at getting a deeper insight into metals' role in DoC, in order to evaluate metal-based drugs, such as metal complexes and metal chelating agents, as potential therapeutic options.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095508PMC
http://dx.doi.org/10.3390/ijms24076867DOI Listing

Publication Analysis

Top Keywords

essential metals
16
traumatic brain
8
brain injury
8
disorders consciousness
8
role doc
8
consciousness
6
brain
5
doc
5
imbalance essential
4
metals
4

Similar Publications

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Cadmium is a non-essential element and neurotoxin that causes neuroinflammation, which leads to neurodegenerative diseases and brain cancer. To date, there are no specific or effective therapeutic agents to control inflammation and alleviate cadmium-induced progressive destruction of brain cells. Fluoroquinolones (FQs), widely used antimicrobials with effective blood-brain barrier penetration, show promise in being repurposed as anti-inflammatory drugs.

View Article and Find Full Text PDF

Investigating the correlation between metal coordination and molecular conductivity in single-molecule systems is essential for advancing our knowledge of molecular electronics, particularly in the realm of spintronics. In the present study, we developed two complex wires utilizing the bipyridine ligand and two transition metal ions, Co and Zn, aiming to study the impact of different spin characters on single-molecule charge transport properties. Single-molecule conductance was investigated using scanning tunnelling microscope breaking junctions (STM-BJ) technique and the underlying mechanism was analysed by density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma-targeting Au-HN-1 nanosystem for CT imaging and photothermal therapy.

Int J Oral Sci

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China.

Tongue squamous cell carcinoma (TSCC) is a prevalent malignancy that afflicts the head and neck area and presents a high incidence of metastasis and invasion. Accurate diagnosis and effective treatment are essential for enhancing the quality of life and the survival rates of TSCC patients. The current treatment modalities for TSCC frequently suffer from a lack of specificity and efficacy.

View Article and Find Full Text PDF

Several studies have reported associations between specific heavy metals and essential trace elements and acute myocardial infarction (AMI). However, there is limited understanding of the relationships between trace elements and AMI in real-life co-exposure scenarios, where multiple elements may interact simultaneously. This cross-sectional study measured serum levels of 56 trace elements using inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!