In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are extensively available and routinely used for disease diagnosis. PET probes with peptide-based targeting are typically composed of small peptides especially developed to have high affinity and specificity for a range of cellular and tissue targets. These probes' key benefits include being less expensive than traditional antibody-based PET tracers and having an effective chemical modification process that allows them to be radiolabeled with almost any radionuclide, making them highly appealing for clinical usage. Currently, as with every pharmaceutical design, the use of in silico strategies is steadily growing in this field, even though it is not part of the standard toolkit used during radiopharmaceutical design. This review describes the recent applications of computational design approaches in the design of novel peptide-based radiopharmaceuticals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095039 | PMC |
http://dx.doi.org/10.3390/ijms24076856 | DOI Listing |
Pharmaceutics
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Plasma and Radiation Physics, National Institute for Laser, 077125 Magurele, Romania.
CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.
Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania.
Aurora kinase B (AurB) is a pivotal regulator of mitosis, making it a compelling target for cancer therapy. Despite significant advances in protein kinase inhibitor development, there are currently no AurB inhibitors readily available for therapeutic use. This study introduces a machine learning-assisted drug repurposing framework integrating quantitative structure-activity relationship (QSAR) modeling, molecular fingerprints-based classification, molecular docking, and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Biomedical Engineering, Tsinghua University, Shuang Qing Road, Beijing 100084, China.
Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!