Thermophilic proteins and enzymes are attractive for use in industrial applications due to their resistance against heat and denaturants. Here, we report on a thermophilic protein that is stable at high temperatures ( 67 °C) but undergoes significant unfolding at room temperature due to cold denaturation. Little is known about the cold denaturation of thermophilic proteins, although it can significantly limit their applications. We investigated the cold denaturation of thermophilic multidomain protein translation initiation factor 2 (IF2) from . IF2 is a GTPase that binds to ribosomal subunits and initiator fMet-tRNA during the initiation of protein biosynthesis. In the presence of 9 M urea, measurements in the far-UV region by circular dichroism were used to capture details about the secondary structure of full-length IF2 protein and its domains during cold and hot denaturation. Cold denaturation can be suppressed by salt, depending on the type, due to the decreased heat capacity. Thermodynamic analysis and mathematical modeling of the denaturation process showed that salts reduce the cooperativity of denaturation of the IF2 domains, which might be associated with the high frustration between domains. This characteristic of high interdomain frustration may be the key to satisfying numerous diverse contacts with ribosomal subunits, translation factors, and tRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094840 | PMC |
http://dx.doi.org/10.3390/ijms24076787 | DOI Listing |
Protein Sci
January 2025
Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.
View Article and Find Full Text PDFDNA Repair (Amst)
December 2024
Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina. Electronic address:
The MSH7 protein is a binding partner of MSH2 forming the MutSγ complex. This complex contributes to the plant mismatch repair (MMR) system by recognizing DNA base-base mismatches. Here, we evaluated the impact of MSH7 on genetic diversity of the tenth generation (G) of wild type and MSH7 deficient Arabidopsis thaliana plants before and after two days exposure to 100 mM NaCl.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
December 2024
Department of Biology, St. Francis Xavier University, 2320 Notre Dame Ave, Antigonish B2G 2W5, NS, Canada. Electronic address:
Heat shock proteins (HSPs) are well known to prevent and repair protein damage caused by various abiotic stressors, but their role in low temperature and freezing stress is not well-characterized in insects compared to other thermal challenges such as heat stress. Ice formation in and around cells is hypothesized to cause protein damage, yet many species of insects can survive freezing, suggesting HSPs may be an important mechanism in freeze tolerance. Here, we studied HSP70 in a freeze-tolerant cricket Gryllus veletis to better understand the role of HSPs in this phenomenon.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
DNA is considered as a prospective candidate for the next-generation data storage medium, due to its high coding density, long cold-storage lifespan, and low energy consumption. Despite these advantages, challenges remain in achieving high-fidelity, fully integrated, and cost-efficient DNA storage system. In this study, a homemade digital microfluidic (DMF)-based compact DNA data storing pipeline is orchestrated to complete the entire process from the synthesis to the sequencing.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. Electronic address:
Enhanced anti-bacterial properties and thermal regulation are realized in cotton fabrics cross-linked with hybrid poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate-co-ethylene glycol methacrylate) nanogels containing gold nanoparticles (Au NPs), denoted as hybrid P(MA-co-MA-co-EGMA)/Au nanogels. Pure P(MA-co-MA-co-EGMA) nanogels are synthesized by emulsion polymerization as carriers and then embedded with Au NPs via in-situ reduction. By applying 1,2,3,4-butanetetracarboxylic acid as a cross-linker and changing the amount of hybrid P(MA-co-MA-co-EGMA)/Au nanogels in solution, the weight gain ratios of hybrid nanogels on cotton fabrics are set as 10 % (CHN-10) and 20 % (CHN-20).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!