AI Article Synopsis

  • - The analysis of tissue alterations is essential in pathology for accurate diagnoses, and new techniques in tissue clearing and fluorescence microscopy have enabled 3D studies of biological tissues.
  • - Combining advanced fluorescence microscopy with classical staining methods like H&E has led to the development of 3D histology, allowing for more detailed observations of tissue structures.
  • - The use of fluorescence staining techniques allows for comparable results to traditional methods, making 3D imaging accessible for pathologists and opening up new possibilities in clinical pathology.

Article Abstract

The analysis of histological alterations in all types of tissue is of primary importance in pathology for highly accurate and robust diagnosis. Recent advances in tissue clearing and fluorescence microscopy made the study of the anatomy of biological tissue possible in three dimensions. The combination of these techniques with classical hematoxylin and eosin (H&E) staining has led to the birth of three-dimensional (3D) histology. Here, we present an overview of the state-of-the-art methods, highlighting the optimal combinations of different clearing methods and advanced fluorescence microscopy techniques for the investigation of all types of biological tissues. We employed fluorescence nuclear and eosin Y staining that enabled us to obtain hematoxylin and eosin pseudo-coloring comparable with the gold standard H&E analysis. The computational reconstructions obtained with 3D optical imaging can be analyzed by a pathologist without any specific training in volumetric microscopy, paving the way for new biomedical applications in clinical pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094801PMC
http://dx.doi.org/10.3390/ijms24076747DOI Listing

Publication Analysis

Top Keywords

fluorescence microscopy
12
biological tissues
8
hematoxylin eosin
8
guide perform
4
perform histology
4
histology biological
4
fluorescence
4
tissues fluorescence
4
microscopy
4
microscopy analysis
4

Similar Publications

Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.

View Article and Find Full Text PDF

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

A Drosophila Model of Mucopolysaccharidosis IIIB.

Genetics

December 2024

Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.

Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole genome gene expression and their causal relationships to neural degeneration remain unknown.

View Article and Find Full Text PDF

Fluorescence resonance energy transfer (FRET)-based biosensors are powerful tools for studying second messengers with high temporal and spatial resolution. FRET is commonly detected by ratio imaging, but fluorescence lifetime imaging microscopy (FLIM), which measures the donor fluorophore's lifetime, offers a robust and more quantitative alternative. We have introduced and optimized four generations of FRET sensors for cAMP, based on the effector molecule Epac1, including variants for either ratio imaging or FLIM detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!