A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of the Nanorough Surface of TiO Thin Films on the Compatibility with Endothelial Cells. | LitMetric

AI Article Synopsis

  • The cytocompatibility of titanium oxides and oxynitrides thin films is significantly influenced by the surface topography of the substrate and coating.
  • Experimentation involved 16 different sample groups with varying surface textures, assessed through magnetron sputtering with different nitrogen to oxygen ratios and bias voltages.
  • Optimal cytocompatibility was found in an abraded surface with a specific TiON thin film configuration, while extreme surface structures negatively impacted cell adhesion and function due to potential damage and inefficiency at the cell/surface interface.

Article Abstract

The cytocompatibility of titanium oxides (TiO) and oxynitrides (N-TiO, TiON) thin films depends heavily on the surface topography. Considering that the initial relief of the substrate and the coating are summed up in the final topography of the surface, it can be expected that the same sputtering modes result in different surface topography if the substrate differs. Here, we investigated the problem by examining 16 groups of samples differing in surface topography; 8 of them were hand-abraded and 8 were machine-polished. Magnetron sputtering was performed in a reaction gas medium with various N:O ratios and bias voltages. Abraded and polished uncoated samples served as controls. The surfaces were studied using atomic force microscopy (AFM). The cytocompatibility of coatings was evaluated in terms of cytotoxicity, adhesion, viability, and NO production. It has been shown that the cytocompatibility of thin films largely depends on the surface nanostructure. Both excessively low and excessively high density of peaks, high and low kurtosis of height distribution (S), and low rates of mean summit curvature (S) have a negative effect. Optimal cytocompatibility was demonstrated by abraded surface with a TiON thin film sputtered at N:O = 1:1 and U = 0 V. The nanopeaks of this surface had a maximum height, a density of about 0.5 per 1 µm, S from 4 to 5, and an S greater than 0.6. We believe that the excessive sharpness of surface nanostructures formed during magnetron sputtering of TiO and N-TiO films, especially at a high density of these structures, prevents both adhesion of endothelial cells, and their further proliferation and functioning. This effect is apparently due to damage to the cell membrane. At low height, kurtosis, and peak density, the main factor affecting the cell/surface interface is inefficient cell adhesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095362PMC
http://dx.doi.org/10.3390/ijms24076699DOI Listing

Publication Analysis

Top Keywords

thin films
12
surface topography
12
endothelial cells
8
tion thin
8
films depends
8
surface
8
magnetron sputtering
8
high density
8
nanorough surface
4
surface tio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!