MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094338PMC
http://dx.doi.org/10.3390/ijms24076423DOI Listing

Publication Analysis

Top Keywords

canonical tgf-β/bmp
8
tgf-β/bmp signalling
8
signalling cascades
8
mirnas
5
post-transcriptional regulatory
4
regulatory crosstalk
4
crosstalk micrornas
4
micrornas canonical
4
signalling
4
osteoblast
4

Similar Publications

Background: Aging is the most significant risk factor for neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), and others. However, no specific age-related molecular change in the brain has been identified that leads to disease onset and progression. We have found age-related increases in bone morphogenic protein (BMP) signaling in both human and mouse brains.

View Article and Find Full Text PDF

Recent studies have linked pain and the resultant nociception-induced neural inflammation (NINI) to trauma-induced heterotopic ossification (THO). It is postulated that nociception at the injury site stimulates the transient receptor potential vanilloid-1 (the transient receptor potential cation channel subfamily V member 1) receptors on sensory nerves within the injured tissues resulting in the expression of neuroinflammatory peptides, substance P (SP), and calcitonin gene-related peptide (CGRP). Additionally, BMP-2 released from fractured bones and soft tissue injury also selectively activates TRVP1 receptors, resulting in the release of SP and CGRP and causing neuroinflammation and degranulation of mast cells causing the breakdown the blood-nerve barrier (BNB), leading to release of neural crest derived progenitor cells (NCDPCs) into the injured tissue.

View Article and Find Full Text PDF

Objective: Many neurodegenerative disorders share a common pathologic feature involving the deposition of abnormal tau protein in the brain (tauopathies). This suggests that there may be some shared pathophysiologic mechanism(s). The largest risk factor for the majority of these disorders is aging, suggesting involvement of the aging process in the shared pathophysiology.

View Article and Find Full Text PDF

Netrin1 patterns the dorsal spinal cord through modulation of Bmp signaling.

Cell Rep

November 2024

Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:

We have identified an unexpected role for netrin1, a canonical axonal guidance cue, as a suppressor of bone morphogenetic protein (Bmp) signaling in the developing dorsal spinal cord. Using a combination of gain- and loss-of-function approaches in chicken and mouse embryonic models, as well as mouse embryonic stem cells (mESCs), we have observed that manipulating the level of netrin1 specifically alters the patterning of the Bmp-dependent dorsal interneurons (dIs), dI1-dI3. Altered netrin1 levels also change Bmp signaling activity, as assessed using bioinformatic approaches, as well as monitoring phosophoSmad1/5/8 activation, the canonical intermediate of Bmp signaling, and Id levels, a known Bmp target.

View Article and Find Full Text PDF

Small molecule probes exist for only ∼2% of human proteins because most lack functional binding pockets or cannot be assayed for high-throughput screening. Selective translation modulation circumvents canonical druggability and assay development constraints by using in vitro transcription-translation (IVTT) as a universal biochemical screening assay. We developed an IVTT activity assay by fusing a GFP reporter to various target gene sequences and screened the target sequences for inhibitors in microfluidic picoliter-scale droplets using a 5,348-member translation inhibitor DNA-encoded library (DEL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!