Previous study has shown that propolis ethanolic extract (PEE) has a protective effect on aging skeletal muscle atrophy. However, the exact molecular mechanism remains unclear. This study aimed to investigate the effect of PEE on D-galactose (D-gal)-induced damage in mouse C2C12 cells. The results revealed that PEE increased the viability of senescent C2C12 cells, decreased the number of senescence-associated β-galactosidase (SA-β-Gal)-positive cells and promoted the differentiation of C2C12 cells. PEE resisted oxidative stress caused by D-gal by activating the Nrf2/HO-1 signaling pathway and maintained the differentiation ability of C2C12 cells. PEE inhibited apoptosis by suppressing p38 phosphorylation and reducing p53 expression. In summary, our findings reveal the molecular mechanism by which PEE protects D-gal-induced C2C12 cells, providing a theoretical basis for the development of PEE for the alleviation of muscle atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094417PMC
http://dx.doi.org/10.3390/ijms24076408DOI Listing

Publication Analysis

Top Keywords

c2c12 cells
20
propolis ethanolic
8
ethanolic extract
8
d-gal-induced c2c12
8
muscle atrophy
8
molecular mechanism
8
cells pee
8
pee
7
c2c12
6
cells
6

Similar Publications

Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model.

J Cancer Res Ther

December 2024

Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.

Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.

Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.

View Article and Find Full Text PDF

Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.

Biol Trace Elem Res

January 2025

Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.

Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.

View Article and Find Full Text PDF

Exercise promotes peripheral glycolysis in skeletal muscle through miR-204 induction via the HIF-1α pathway.

Sci Rep

January 2025

Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.

The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.

View Article and Find Full Text PDF

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Pervasive RNA-binding protein enrichment on TAD boundaries regulates TAD organization.

Nucleic Acids Res

January 2025

Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.

Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!