Previous research reported that prolonged benzene exposure during in utero fetal development causes greater fetal abnormalities than in adult-stage exposure. This phenomenon increases the risk for disease development at the fetal stage, particularly carcinogenesis, which is mainly associated with hematological malignancies. Benzene has been reported to potentially act via multiple modes of action that target the hematopoietic stem cell (HSCs) niche, a complex microenvironment in which HSCs and multilineage hematopoietic stem and progenitor cells (HSPCs) reside. Oxidative stress, chromosomal aberration and epigenetic modification are among the known mechanisms mediating benzene-induced genetic and epigenetic modification in fetal stem cells leading to in utero carcinogenesis. Hence, it is crucial to monitor exposure to carcinogenic benzene via environmental, occupational or lifestyle factors among pregnant women. Benzene is a well-known cause of adult leukemia. However, proof of benzene involvement with childhood leukemia remains scarce despite previously reported research linking incidences of hematological disorders and maternal benzene exposure. Furthermore, accumulating evidence has shown that maternal benzene exposure is able to alter the developmental and functional properties of HSPCs, leading to hematological disorders in fetus and children. Since HSPCs are parental blood cells that regulate hematopoiesis during the fetal and adult stages, benzene exposure that targets HSPCs may induce damage to the population and trigger the development of hematological diseases. Therefore, the mechanism of in utero carcinogenicity by benzene in targeting fetal HSPCs is the primary focus of this review.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094243 | PMC |
http://dx.doi.org/10.3390/ijms24076335 | DOI Listing |
Environ Sci Process Impacts
January 2025
Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Burning and flaring of oil and gas following the 2010 Deepwater Horizon (DWH) oil spill generated high airborne concentrations of fine particulate matter (PM). Neurological effects of PM have been previously reported, but this relationship has received limited attention in the context of oil spills. We evaluated associations between burning-related PM and prevalence of self-reported neurological symptoms during, and 1-3 years after, the DWH disaster cleanup.
View Article and Find Full Text PDFERJ Open Res
January 2025
Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
Introduction: Exposure to environmental factors ( air pollution and second-hand tobacco smoke) have been associated with impaired lung function. However, the impact of environmental factors on lung health is usually evaluated separately and not with an exposomic framework. In this regard, breath analysis could be a noninvasive tool for biomonitoring of global human environmental exposure.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Atmospheric Pollution Research-National Research Council (IIA-CNR), Research Area of Rome 1, Strada Provinciale 35d, Montelibretti, 9-00010 Roma, Italy.
Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China. Electronic address:
Nanomaterials (Basel)
January 2025
Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of -dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (HBTC) and 1,3,5-tris(4-carboxyphenyl)benzene (HBTB), respectively. The strong bond between the carboxylic acid group of HBTC and HBTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!