Variability, Expression, and Methylation of and Genes in Bladder Cancer Pathophysiology.

Int J Mol Sci

Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.

Published: March 2023

Bladder cancer (BC) is the 10th most common form of cancer globally, but its complete aetiology is still unknown. Nevertheless, there is evidence that chronic inflammation plays a role in the development and progression of BC. Therefore, the presented study aimed to detect a potential association between selected single nucleotide polymorphisms (SNPs)-rs1800797 and rs2069845 in and rs2227307 in -and BC development, as well as to identify the impact of BC on the level of expression and methylation of and promoters in PBMCs with the use of the TaqMan SNP genotyping assay, TaqMan gene expression assay, and methylation-sensitive high-resolution melting techniques. We did not find any association between the genotypes and combined genotypes of all studied polymorphisms and the occurrence of BC. However, we found that BC patients were characterised by decreased and mRNA expression levels compared to the controls. Additionally, the methylation status of the promoter was higher in controls than in BC patients. Our findings suggest that inflammation may be involved in the development and progression of BC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093978PMC
http://dx.doi.org/10.3390/ijms24076266DOI Listing

Publication Analysis

Top Keywords

expression methylation
8
bladder cancer
8
development progression
8
variability expression
4
methylation genes
4
genes bladder
4
cancer pathophysiology
4
pathophysiology bladder
4
cancer 10th
4
10th common
4

Similar Publications

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming.

Radiat Environ Biophys

January 2025

Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.

Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.

View Article and Find Full Text PDF

A dihydrochalcone-specific O-methyltransferase from leaf buds of Populus trichocarpa implicated in bud resin formation.

J Exp Bot

January 2025

Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada.

Production of secreted leaf bud resin is a mechanism for temperate trees to protect dormant leaf buds against frost damage, dehydration, and insect herbivory. Bud resins contain a wide variety of special metabolites including terpenoids, benzenoids, and phenolics. The leaf bud resins of Populus trichocarpa and P.

View Article and Find Full Text PDF

Background/aims: Colon adenocarcinoma (COAD) is a prevalent malignant tumor of the digestive system. Previous research has indicated that RNA N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein-15 (RBM15) is involved in various cancers. We aimed to investigate the function of RBM15 in COAD progression and its underlying molecular mechanism.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.

Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!