Cucumber ( L.), sensitive to cold stress, is one of the most economically important vegetables. Here, we systematically investigated the roles of exogenous glycine betaine, chitosan, and chitosan oligosaccharide in alleviating cold stress in cucumber seedlings. The results showed that 50 mg·L chitosan oligosaccharide had the best activity. It effectively increases plant growth, chlorophyll content, photosynthetic capacity, osmotic regulatory substance content, and antioxidant enzyme activities while reducing relative electrical conductivity and malondialdehyde levels in cucumber seedlings under cold stress. To reveal the protective effects of chitosan oligosaccharide in cold stress, cucumber seedlings pretreated with 50 mg·L chitosan oligosaccharide were sampled after 0, 3, 12, and 24 h of cold stress for transcriptome analysis, with distilled water as a control. The numbers of differentially expressed genes in the four comparison groups were 656, 1274, 1122, and 957, respectively. GO functional annotation suggested that these genes were mainly involved in "voltage-gated calcium channel activity", "carbohydrate metabolic process", "jasmonic acid biosynthetic", and "auxin response" biological processes. KEGG enrichment analysis indicated that these genes performed important functions in "phenylpropanoid biosynthesis", "MAPK signaling pathway-plant", "phenylalanine metabolism", and "plant hormone signal transduction." These findings provide a theoretical basis for the use of COS to alleviate the damage caused by cold stress in plant growth and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094205 | PMC |
http://dx.doi.org/10.3390/ijms24076202 | DOI Listing |
J Exp Zool A Ecol Integr Physiol
January 2025
Department of Biology, Widener University, Chester, Pennsylvania, USA.
Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.
View Article and Find Full Text PDFHeliyon
July 2024
Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil.
Since December 2019, a new form of Severe Acute Respiratory Syndrome (SARS) has emerged worldwide, caused by SARS coronavirus 2 (SARS-CoV-2). This disease was called COVID-19 and was declared a pandemic by the World Health Organization in March 2020. Symptoms can vary from a common cold to severe pneumonia, hypoxemia, respiratory distress, and death.
View Article and Find Full Text PDFJ Nutr
January 2025
University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany. Electronic address:
Background: It is not yet clear to what extent the physiological regulatory mechanisms that maintain core body temperature are reflected by changes in resting energy expenditure (REE). Particularly in indirect calorimetry with a canopy, the effects of short-term temperature exposures have not yet been investigated. This can be of relevance for the determination of REE in practice.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, P.R. China.
Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China.
Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!