Southeastern Canada is inhabited by an amalgam of hybridizing wolf-like canids, raising fundamental questions regarding their taxonomy, origins, and timing of hybridization events. Eastern wolves (Canis lycaon), specifically, have been the subject of significant controversy, being viewed as either a distinct taxonomic entity of conservation concern or a recent hybrid of coyotes (C. latrans) and grey wolves (C. lupus). Mitochondrial DNA analyses show some evidence of eastern wolves being North American evolved canids. In contrast, nuclear genome studies indicate eastern wolves are best described as a hybrid entity, but with unclear timing of hybridization events. To test hypotheses related to these competing findings we sequenced whole genomes of 25 individuals, representative of extant Canadian wolf-like canid types of known origin and levels of contemporary hybridization. Here we present data describing eastern wolves as a distinct taxonomic entity that evolved separately from grey wolves for the past ∼67,000 years with an admixture event with coyotes ∼37,000 years ago. We show that Great Lakes wolves originated as a product of admixture between grey wolves and eastern wolves after the last glaciation (∼8,000 years ago) while eastern coyotes originated as a product of admixture between "western" coyotes and eastern wolves during the last century. Eastern wolf nuclear genomes appear shaped by historical and contemporary gene flow with grey wolves and coyotes, yet evolutionary uniqueness remains among eastern wolves currently inhabiting a restricted range in southeastern Canada.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098045PMC
http://dx.doi.org/10.1093/molbev/msad055DOI Listing

Publication Analysis

Top Keywords

eastern wolves
28
grey wolves
16
wolves
12
eastern
9
eastern wolf
8
southeastern canada
8
timing hybridization
8
hybridization events
8
distinct taxonomic
8
taxonomic entity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!