Background: The prevalence of colorectal cancer (CRC) worldwide is a huge challenge to human health. Primary tumor locations found to impact prognosis and response to therapy. The important role of gut microbiota in the progression and treatment of CRC has led to many attempts of alleviating chemotherapy-induced adverse effects using microecologics. However, the underlying mechanism of the difference in the prognosis of different primary tumor locations and the synergistic effect of prebiotics on chemotherapy need to be further elucidated. This study aims to explore the differences in tumor microbiota and examine the effectiveness of xylooligosaccharides (XOS) on gut microbiota, adverse effects, and bioavailability of chemotherapy drugs in CRC patients at different primary tumor locations.

Methods: This is a double-blinded, randomized, parallel controlled clinical trial. Participants with left-sided CRC (LSCRC, n = 50) and right-sided CC (RSCC, n = 50) will randomly allocated to prebiotic group (n = 25) or control group (n = 25) and will receive either a daily XOS (3 g/day) or placebo, respectively, for 12 weeks. The primary outcomes will be the differences in the mucosa microbiota composition at different tumor locations and differences in gut microbiota composition, adverse effects, and blood concentration of capecitabine posttreatment. The secondary outcomes will include other blood indicators, short-chain fatty acids (SCFAs) concentration, quality of life, and mental health.

Discussion: This study will reveal the potential benefits of prebiotic for improving the gut microbiota composition, alleviating the adverse effects, and improving the efficacy of chemotherapy in patients with CRC. In addition, this study will provide data on the different distribution of tumor microbiota and the different changes of gut microbiota during treatment in LSCRC and RSCC, which may provide novel insights into personalized cancer treatment strategies based on primary tumor locations and gut microbiota in the future.

Trial Registration: Chinese Clinical Trial Registry ( www.chictr.org.cn ): ChiCTR2100046237. Registered on 12 May 2021.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091326PMC
http://dx.doi.org/10.1186/s13063-023-07137-yDOI Listing

Publication Analysis

Top Keywords

gut microbiota
28
adverse effects
20
primary tumor
20
tumor locations
20
clinical trial
12
microbiota composition
12
microbiota
10
colorectal cancer
8
tumor
8
tumor microbiota
8

Similar Publications

Background: The Kasai portoenterostomy (KPE) aims to re-establish bile flow in biliary atresia (BA); however, BA remains the commonest indication for liver transplantation in pediatrics. Gut microbiota-host interplay is increasingly associated with outcomes in chronic liver disease. This study characterized fecal microbiota and fatty acid metabolites in BA.

View Article and Find Full Text PDF

Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.

View Article and Find Full Text PDF

Alcohol abuse can lead to significant cardiac injury, resulting in Alcoholic heart disease (AHD). The interplay between cardiac health and gut microbiota composition in the context of alcohol consumption is not well understood. Shen Song Yang Xin (SSYX) capsule and amiodarone are common drugs used to treat alcoholic heart disease, but little is known about their microbial regulatory mechanisms in alcoholic heart disease.

View Article and Find Full Text PDF

.

Expert Rev Gastroenterol Hepatol

January 2025

Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California San Diego, San Diego, CA.

Introduction: The gut microbiota has a complex relationship with the human host and is key to maintaining health. Disruption of the healthy diverse gut microbial milieu plays an important role in the pathogenesis of several diseases including infection (CDI), inflammatory bowel disease, irritable bowel syndrome, alcohol-related liver disease and metabolic-dysfunction associated steatotic liver disease (MASLD). Fecal microbiota transplantation (FMT) is highly effective in treating CDI, though its utility in other diseases is still being explored.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!