A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New insights into posttranslational modifications of proteins during bull sperm capacitation. | LitMetric

Background: Due to the unique nature of spermatozoa, which are transcriptionally and translationally silent, the regulation of capacitation is based on the formation of posttranslational modifications of proteins (PTMs). However, the interactions between different types of PTMs during the capacitation remain unclear. Therefore, we aimed to unravel the PTM-based regulation of sperm capacitation by considering the relationship between tyrosine phosphorylation and reversible oxidative PTMs (oxPTMs), i.e., S-nitrosylation and S-glutathionylation. Since reversible oxPTMs may be closely related to peroxyredoxin (PRDX) activity, the second aim was to verify the role of PRDXs in the PTM-based regulation of capacitation.

Methods: Cryopreserved bull sperm were capacitated in vitro with or without PRDX inhibitor. Qualitative parameters of sperm and symptoms characteristic of capacitation were analyzed. Posttranslational protein modifications (S-nitrosylation, S-glutathionylation, tyrosine phosphorylation) were investigated at the cellular level (flow cytometry, fluorescence microscopy) and at the proteomic level (fluorescent gel-based proteomic approach).

Results: Zona-pellucida binding proteins (ACRBP, SPAM1, ZAN, ZPBP1 and IZUMO4) were particularly rich in reversible oxPTMs. Moreover, numerous flagellar proteins were associated with all analyzed types of PTMs, which indicates that the direction of posttranslational modifications was integrated. Inhibition of PRDX activity during capacitation caused an increase in S-nitrosylation and S-glutathionylation and a decrease in tyrosine phosphorylation. Inhibition of PRDXs caused GAPDHS to undergo S-glutathionylation and the GSTO2 and SOD2 enzymes to undergo denitrosylation. Moreover, PRDX inhibition caused the AKAP proteins to be dephosphorylated.

Conclusions: Our research provides evidence that crosstalk occurs between tyrosine phosphorylation and reversible oxPTMs during bull sperm capacitation. This study demonstrates that capacitation triggers S-nitrosylation and S-glutathionylation (and reverse reactions) of zona-pellucida binding proteins, which may be a new important mechanism that determines the interaction between sperms and oocytes. Moreover, TCA-related and flagellar proteins, which are particularly rich in PTMs, may play a key role in sperm capacitation. We propose that the deglutathionylation of ODFs and IZUMO4 proteins is a new hallmark of bull sperm capacitation. The obtained results indicate a relationship between PRDX activity and protein phosphorylation, S-glutathionylation and S-nitrosylation. The activity of PRDXs may be crucial for maintaining redox balance and for providing proper PKA-mediated protein phosphorylation during capacitation. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091539PMC
http://dx.doi.org/10.1186/s12964-023-01080-wDOI Listing

Publication Analysis

Top Keywords

sperm capacitation
20
bull sperm
16
tyrosine phosphorylation
16
s-nitrosylation s-glutathionylation
16
posttranslational modifications
12
reversible oxptms
12
prdx activity
12
capacitation
11
proteins
8
modifications proteins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!