FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer.

J Transl Med

State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200 XieTu Road, Shanghai, 200032, China.

Published: April 2023

Purpose: The claudin 18.2 (CLDN18.2) antigen is frequently expressed in malignant tumors, including pancreatic ductal adenocarcinoma (PDAC). Although CLDN18.2-targeted CAR-T cells demonstrated some therapeutic efficacy in PDAC patients, further improvement is needed. One of the major obstacles might be the abundant cancer-associated fibroblasts (CAFs) in the PDAC tumor microenvironment (TME). Targeting fibroblast activation protein (FAP), a vital characteristic of CAFs provides a potential way to overcome this obstacle. In this study, we explored the combined antitumor activity of FAP-targeted and CLDN18.2-targeted CAR-T cells against PDAC.

Methods: Novel FAP-targeted CAR-T cells were developed. Sequential treatment of FAP-targeted and CLDN18.2-targeted CAR-T cells as well as the corresponding mechanism were explored in immunocompetent mouse models of PDAC.

Results: The results indicated that the priorly FAP-targeted CAR-T cells infusion could significantly eliminate CAFs and enhance the anti-PDAC efficacy of subsequently CLDN18.2-targeted CAR-T cells in vivo. Interestingly, we observed that FAP-targeted CAR-T cells could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) and promote the survival of CD8 T cells and CAR-T cells in tumor tissue.

Conclusion: In summary, our finding demonstrated that FAP-targeted CAR-T cells could increase the antitumor activities of sequential CAR-T therapy via remodeling TME, at least partially through inhibiting MDSCs recruitment. Sequential infusion of FAP-targeted and CLDN18.2-targeted CAR-T cells might be a feasible approach to enhance the clinical outcome of PDAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091631PMC
http://dx.doi.org/10.1186/s12967-023-04080-zDOI Listing

Publication Analysis

Top Keywords

car-t cells
40
fap-targeted car-t
20
cldn182-targeted car-t
20
car-t
12
cells
12
fap-targeted cldn182-targeted
12
fap-targeted
8
mdscs recruitment
8
cldn182-targeted
5
car-t suppresses
4

Similar Publications

Anti-CD19 chimeric antigen receptor T cells (CAR) are a well-established treatment option for children and young adults suffering from relapsed/refractory B-lineage acute lymphoblastic leukemia. Bridging therapy is used to control disease prior to start of lymphodepletion before CAR infusion and thereby improve efficacy of CAR therapy. However, the effect of different bridging strategies on outcome, side effects and response to CAR therapy is still poorly understood.

View Article and Find Full Text PDF

The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).

View Article and Find Full Text PDF

Retrovirus-based manufacturing of chimeric antigen receptor-modified T cells for cancer therapy research.

Methods Cell Biol

January 2025

Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany. Electronic address:

Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population.

View Article and Find Full Text PDF

Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!