Genome-wide analysis of key gene families in RNA silencing and their responses to biotic and drought stresses in adzuki bean.

BMC Genomics

Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, HuilongguanBeinonglu 7, Changping District, Beijing, 102206, China.

Published: April 2023

Background: In plants, RNA silencing is an important conserved mechanism to regulate gene expression and combat against abiotic and biotic stresses. Dicer-like (DCL) and Argonaute (AGO) proteins and RNA-dependent RNA polymerase (RDR) are the core elements involved in gene silencing and their gene families have been explored in many plants. However, these genes and their responses to stresses have not yet been well characterized in adzuki bean.

Results: A total of 11 AGO, 7 DCL and 6 RDR proteins were identified, and phylogenetic analyses of these proteins showed that they clustered into six, four and four clades respectively. The expression patterns of these genes in susceptible or resistant adzuki bean cultivars challenged with drought, bean common mosaic virus and Podosphaera xanthii infections were further validated by quantitative RT-PCR. The different responses of these proteins under abiotic and biotic stresses indicated their specialized regulatory mechanisms.

Conclusions: In this study, 24 genes of the DCL, AGO and RDR gene families in adzuki bean were identified, and the sequence characterization, structure of the encoded proteins, evolutionary relationship with orthologues in other legumes and gene expression patterns under drought and biotic stresses were primarily explored, which enriched our understanding of these genes in adzuki bean. Our findings provide a foundation for the comparative genomic analyses of RNA silencing elements in legume plants and further new insights into the functional complexity of RNA silencing in the response to various stresses in adzuki bean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091639PMC
http://dx.doi.org/10.1186/s12864-023-09274-9DOI Listing

Publication Analysis

Top Keywords

adzuki bean
20
rna silencing
16
gene families
12
biotic stresses
12
stresses adzuki
8
gene expression
8
abiotic biotic
8
expression patterns
8
gene
6
stresses
6

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry.

View Article and Find Full Text PDF

Background Voandzou and cowpea are two legumes commonly used in African dishes as alternative sources of proteins. The present study aimed to evaluate the effects of steaming and frying on the nutritional and functional properties of Cameroonian cowpea () and Bambara groundnut (). Methodology The nutritional values, as well as the antioxidant, alpha-amylase, and alpha-glucosidase inhibitory activities of "koki" and "beignet koki," which are the traditional steamed dish and fritters made from cowpea and Bambara groundnut, respectively, were assessed.

View Article and Find Full Text PDF

The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.

View Article and Find Full Text PDF

is the main pathogen of peanut pod rot in China. To investigate the type of toxin and its pathogenic mechanism, a macrolide, brefeldin A, was isolated. The structure of the compound was identified by 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!