Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aimed to determine the optimal radiographic conditions for detecting lesions on digital chest radiographs using an indirect conversion flat-panel detector with a copper (Cu) filter. First, we calculated the effective detective quantum efficiency (DQE) by considering clinical conditions to evaluate the image quality. We then measured the segmentation accuracy using a U-net convolutional network to verify the effectiveness of the Cu filter. We obtained images of simulated lung tumors using 10-mm acrylic spheres positioned at the right lung apex and left middle lung of an adult chest phantom. The Dice coefficient was calculated as the similarity between the output and learning images to evaluate the accuracy of tumor area segmentation using U-net. Our results showed that effective DQE was higher in the following order up to the spatial frequency of 2 cycles/mm: 120 kV + no Cu, 120 kV + Cu 0.1 mm, and 120 kV + Cu 0.2 mm. The segmented region was similar to the true region for mass-area extraction in the left middle lobe. The lesion segmentation in the upper right lobe with 120 kV + no Cu and 120 kV + Cu 0.1 mm was less successful. However, adding a Cu filter yielded reproducible images with high Dice coefficients, regardless of the tumor location. We confirmed that adding a Cu filter decreases the X-ray absorption efficiency while improving the signal-to-noise ratio (SNR). Furthermore, artificial intelligence accurately segments low-contrast lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12194-023-00719-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!