AI Article Synopsis

  • Recent research highlights the importance of clearing neurotoxic proteins through cerebrospinal fluid (CSF) to blood for predicting neurological diseases, introducing new plasma biomarkers.
  • The study involved 106 individuals with neurological disorders and examined the relationship between specific plasma biomarkers (like amyloid-β, total-tau, GFAP, and NfL) and brain imaging measures related to CSF clearance and glymphatic function.
  • Findings indicate that while plasma levels of neurodegeneration markers correlate with CSF clearance measures, these levels fluctuate throughout the day and are not significantly influenced by sleep quality.

Article Abstract

Clearance of neurotoxic brain proteins via cerebrospinal fluid (CSF) to blood has recently emerged to be crucial, and plasma biomarkers of neurodegeneration were newly introduced to predict neurological disease. This study examines in 106 individuals with neurological disorders associations between plasma biomarkers [40 and 42 amino acid-long amyloid-β (Aβ40 and Aβ42), total-tau, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL)] and magnetic resonance imaging measures of CSF-mediated clearance from brain via extra-vascular pathways (proxy of glymphatic function) and CSF-to-blood clearance variables from pharmacokinetic modeling (proxy of meningeal lymphatic egress). We also examine how biomarkers vary during daytime and associate with subjective sleep quality. Plasma concentrations of neurodegeneration markers associate with indices of glymphatic and meningeal lymphatic functions in individual- and disease-specific manners, vary during daytime, but are unaffected by sleep quality. The results suggest that plasma concentrations of neurodegeneration biomarkers associate with measures of glymphatic and meningeal lymphatic function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097687PMC
http://dx.doi.org/10.1038/s41467-023-37685-5DOI Listing

Publication Analysis

Top Keywords

meningeal lymphatic
16
glymphatic meningeal
12
neurological disorders
8
plasma biomarkers
8
vary daytime
8
sleep quality
8
quality plasma
8
plasma concentrations
8
concentrations neurodegeneration
8
plasma
5

Similar Publications

Breaking boundaries: role of the brain barriers in metastatic process.

Fluids Barriers CNS

January 2025

Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.

Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently.

View Article and Find Full Text PDF

Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging.

J Neuroinflammation

January 2025

Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.

Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.

Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.

View Article and Find Full Text PDF

A universal live vaccine platform against multiple serotypes Streptococcus suis based on polyvalent antigen protein.

Vaccine

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China. Electronic address:

Streptococcus suis (S. suis) is a major pathogen that poses a long-term threat to swine populations. Due to its foodborne transmission, this pathogen has recently emerged as a leading cause of meningitis in humans, presenting a significant public health challenge.

View Article and Find Full Text PDF

Neuroimmunology is reshaping the understanding of the central nervous system (CNS), revealing it as an active immune organ rather than an isolated structure. This review delves into the unprecedented discoveries transforming the field, including the emerging roles of microglia, astrocytes, and the blood-brain barrier (BBB) in orchestrating neuroimmune dynamics. Highlighting their dual roles in both repair and disease progression, we uncover how these elements contribute to the intricate pathophysiology of neurodegenerative diseases, cerebrovascular conditions, and CNS tumors.

View Article and Find Full Text PDF

Background: Cranial Rhythmic Impulse (CRI) or Primary Respiratory Mechanism (PRM), movement felt on the scalp or the rest of the body, respectively, is a fundamental concept used by osteopaths in their practice for their diagnosis and treatment. However, the physiological basis of this phenomenon remains unclear. Sutherland, the founder of cranial osteopathy, proposed in 1939 that PRM was due to the movement of the cranial bones pulled by the meninges, themselves pushed by the fluctuation of cerebrospinal fluid and the motility of the central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!