Research progress of engineering microbial cell factories for pigment production.

Biotechnol Adv

College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China. Electronic address:

Published: May 2023

Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2023.108150DOI Listing

Publication Analysis

Top Keywords

natural pigments
20
microbial cell
12
cell factories
12
engineering microbial
8
factories pigment
8
pigment production
8
production natural
8
synthesis natural
8
microbial synthesis
8
pigments
7

Similar Publications

Guava is a fruit crop widely exploited in the Northeast region of Brazil. However, its exploitation is limited by water scarcity and, in many cases, producers are forced to use water with high levels of salts in irrigation. Thus, it is necessary to develop techniques to induce plant tolerance to salt stress, and the foliar application of a non-enzymatic compound such as ascorbic acid is a promising alternative to mitigate the deleterious effects on plants.

View Article and Find Full Text PDF

is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.

View Article and Find Full Text PDF

Vitiligo is a chronic autoimmune pigmentation disorder shaped by a complex interplay of genetic predispositions and environmental triggers. While conventional therapies-phototherapy, corticosteroids, and immunosuppressants-can be effective, their benefits are often partial and temporary, with recurrence common once treatment stops. As such, there is increasing interest in exploring complementary approaches that may offer a more sustainable impact.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.

View Article and Find Full Text PDF

In this study, the impact of leonardite as a feed additive in goldfish diets was examined, focusing on its potential to positively influence feed and water parameters, which are critical for achieving sustainable ornamental fish farming. In this study, goldfish were fed diets containing four different levels of leonardite (0%, 2%, 6%, 10%). The experiment was conducted in 12 tanks with 3 replicates per treatment and lasted for 3 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!