Cloning, expression and in vitro validation of chimeric multi epitope vaccine candidate against visceral leishmaniasis infection.

Life Sci

Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India; Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India. Electronic address:

Published: June 2023

Visceral Leishmaniasis or Kala-Azar is one of the most severe and deadly neglected tropical disease caused by the Leishmania parasite. A few number of vaccines are going through different phases in clinical trial but failing of these vaccines in successive phase trial or less efficacy, urge to develop highly immunogenic and cost-effective treatment to get rid of deadly VL. This study focuses on the development of more potent vaccine candidate against VL. The recombinant vaccine candidate LeiSp was expressed in Pichia pastoris, followed by purification and characterization. The purified protein was also tested for any post-translation modification, which favors being a potent immunogenic candidate. Further, the expression modulation of different pro-inflammatory and anti-inflammatory cytokines was evaluated in THP1 cell lines. A significant upregulation in the expression of pro-inflammatory cytokines while no significant changes were observed in the expression of anti-inflammatory cytokines. The impact of recombinant vaccine protein candidates in infected conditions were determined. Here, upon treatment with chimeric vaccine protein candidate, we observed a considerable recovery in the expression level of pro-inflammatory cytokines, which were downregulated upon infection alone. In addition to this, we found a significant decrease in the expression of anti-inflammatory cytokines, which were upregulated during infection alone. We further validated our findings in infected hPBMCs and observed similar expression modulation of pro-inflammatory and anti-inflammatory cytokines with and without treatment. Thus, the present study indicates that the chimeric LeiSp protein which was designed using bioinformatics approaches shows a potential inductive efficacy for pro-inflammatory cytokines in Leishmania-infected cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2023.121689DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory cytokines
16
vaccine candidate
12
pro-inflammatory cytokines
12
visceral leishmaniasis
8
recombinant vaccine
8
expression modulation
8
modulation pro-inflammatory
8
pro-inflammatory anti-inflammatory
8
observed expression
8
expression anti-inflammatory
8

Similar Publications

Lactobacillus crispatus S-layer proteins modulate innate immune response and inflammation in the lower female reproductive tract.

Nat Commun

December 2024

Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK.

Lactobacillus species dominance of the vaginal microbiome is a hallmark of vaginal health. Pathogen displacement of vaginal lactobacilli drives innate immune activation and mucosal barrier disruption, increasing the risks of STI acquisition and, in pregnancy, of preterm birth. We describe differential TLR mediated activation of the proinflammatory transcription factor NF-κB by vaginal pathogens and commensals.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICI) represent new anticancer agents and have been used worldwide. However, ICI can potentially induce life-threatening severe cutaneous adverse reaction (SCAR), such as Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), hindering continuous ICI therapy. We examine 6 cohorts including 25 ICI-induced SJS/TEN patients and conduct single-cell RNA sequencing (scRNA-seq) analysis, which shows overexpression of macrophage-derived CXCL10 that recruits CXCR3 cytotoxic T lymphocytes (CTL) in blister cells from ICI-SJS/TEN skin lesions.

View Article and Find Full Text PDF

Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages.

Nat Commun

December 2024

Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.

The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed, synthesized and explored their anti-inflammatory activities and mechanism in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had lower degree of cytotoxicity than that of naproxen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!