To solve heavy metals leaching problem in the utilization of various industrial solid wastes, this work investigated the heavy metals immobilization of ternary geopolymer prepared by nickel slag (NS), lithium slag (LS), and metakaolin (MK). Compressive strength was measured to determine the optimum and appropriate mix proportions. The leaching characteristics of typical heavy metals (Cu (Ⅱ), Pb (Ⅱ), and Cr (Ⅲ)) in acid, alkali, and salt environments were revealed by Inductively Coupled Plasma (ICP). The heavy metals immobilization mechanism was explored by Mercury Intrusion Porosimetry (MIP), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) tests. The experimental results show that the group with a mass ratio of NS, LS and MK of 1:1:8 exhibits the highest compressive strength, which reaches 69.1 MPa at 28 d. The ternary geopolymer possesses a desirable capacity for immobilizing inherent heavy metals, where the immobilization rates of Cu and Pb reach 96.69 %, and that of Cr reaches 99.97 %. The leaching concentrations of Cr and Pb increase when the samples are exposed to acidic and alkaline environments. Cu and Pb are mainly physically encapsulated in geopolymer. Additionally, immobilization of Cr mainly involves physical encapsulation and chemical bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131380DOI Listing

Publication Analysis

Top Keywords

heavy metals
24
metals immobilization
16
ternary geopolymer
12
immobilization ternary
8
nickel slag
8
slag lithium
8
lithium slag
8
slag metakaolin
8
compressive strength
8
heavy
6

Similar Publications

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Prevalence of chronic kidney disease and anemia in Hirakud Command Area, Odisha, India: unveiling the role of environmental toxicants.

J Nephrol

January 2025

Laboratory of Renal Toxicopathology & Medicine, P.G. Department of Environmental Sciences, Sambalpur University, Burla, Odisha, 768019, India.

Background: The present community-based study assessed the prevalence of chronic kidney disease (CKD)/chronic kidney disease of unknown origin (CKDu) as well as anemia in some intense agricultural zones under Hirakud Command Area and evaluated their association with pesticides and heavy metal exposure.

Methods: Random cluster sampling method was used to assess the prevalence of CKD and anemia. Hematological analysis was carried out using autoanalyzer.

View Article and Find Full Text PDF

Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.

View Article and Find Full Text PDF

Epigenetic regulation and post-translational modifications of ferroptosis-related factors in cardiovascular diseases.

Clin Epigenetics

January 2025

Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.

As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!