Spectra of methanesulfonic acid (CHSOH, MSA) and its complex with water have been studied by microwave spectroscopy and density functional theory calculations. For the monomer, spectra were obtained for both the parent and -OD isotopologues and, in each case, revealed a pair of tunneling states that are attributed to large amplitude motion of the hydroxyl hydrogen about the S-O(H) bond. Transitions crossing between tunneling states were not found in the parent spectrum and are estimated to be outside the range of the spectrometer, thus precluding the direct determination of the tunneling energy. For the -OD form, however, the tunneling energy was determined to be Δ = 6471.9274(18) MHz from direct measurement of the cross-state -type transitions. In its complex with water, the acidic hydrogen of the MSA forms a hydrogen bond with the water oxygen. A secondary hydrogen bond involving the water hydrogen and an SO oxygen completes a six-membered ring, forming a cyclic structure typical of hydrated oxyacids. No evidence of internal motion was observed. Rotational spectra of the CHSOH···DO and CHSOD···DO isotopologues were also obtained and analyzed. Comparison with theoretical calculations confirms the cyclic structure, though the orientation of the unbound water hydrogen is ambiguous.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c01395 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States.
The supramolecular binding exclusively by H-bonds of SeO, MoO and WO ions to form nanojars of the formula [EO⊂{-Cu(μ-OH)(μ-pz)}] (; E = Se, Mo, W; = 28-34; pz = pyrazolate) was studied in solution by electrospray ionization mass spectrometry, variable temperature, paramagnetic H NMR and UV-vis spectroscopy, and in the solid state by single-crystal X-ray crystallography. These large anions allow for the observation of a record nanojar size, (E = Mo, W). Six crystal structures are described of nanojars of varying sizes with either SeO, MoO or WO entrapped ions, including the first example of a cocrystal of two different nanojars in crystallographically unique positions, and .
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Water Resources Development and Management, Indian Institute of Technology, Roorkee, Uttarakhand, India.
The rapid urbanization, industrial growth, and socio-cultural activities along riverbanks in hilly cities are transforming land use and intensifying water infrastructure challenges. Paonta Sahib, a culturally significant town in Himachal Pradesh on the Yamuna River, along the foothills of the Himalayas exemplifies these pressures due to its religious tourism, industrialization, and mining activities. This study explores sustainable riverfront development at Paonta Sahib, addressing socio-cultural, environmental, and technical concerns essential for eco-sensitive urban planning.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department Chemical and Food Engineering, UFSC, Florianópolis, 88040-900, SC, Brazil.
Produced water management is a significant challenge for the oil and gas industry. Due to the large volumes and complex composition of this water, treatment requires special attention, resulting in high costs for companies in the sector. Naphthenic acids, known for their recalcitrance, add a layer of complexity to the treatment process.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Late-onset Alzheimer's disease (LOAD) is the leading cause of dementia and a major contributor to increased mortality. Recent human datasets have revealed many LOAD genetic risk factors that are correlated with the degree of AD burden. Further, the complexity and heterogeneity of LOAD appears to be promoted by interactions between genetics and environmental factors such as diet, sedentary behavior, and exposure to toxicants, like lead (Pb), cadmium (Cd), and arsenic (As).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!