Analyzing trait-climate relationships within and among taxa using machine learning and herbarium specimens.

Am J Bot

Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, 2052, New South Wales, Australia.

Published: May 2023

Premise: Continental-scale leaf trait studies can help explain how plants survive in different environments, but large data sets are costly to assemble at this scale. Automating the measurement of digitized herbarium collections could rapidly expand the data available to such studies. We used machine learning to identify and measure leaves from existing, digitized herbarium specimens. The process was developed, validated, and applied to analyses of relationships between leaf size and climate within and among species for two genera: Syzygium (Myrtaceae) and Ficus (Moraceae).

Methods: Convolutional neural network (CNN) models were used to detect and measure complete leaves in images. Predictions of a model trained with a set of 35 randomly selected images and a second model trained with 35 user-selected images were compared using a set of 50 labeled validation images. The validated models were then applied to 1227 Syzygium and 2595 Ficus specimens digitized by the National Herbarium of New South Wales, Australia. Leaf area measurements were made for each genus and used to examine links between leaf size and climate.

Results: The user-selected training method for Syzygium found more leaves (9347 vs. 8423) using fewer training masks (218 vs. 225), and found leaves with a greater range of sizes than the random image training method. Within each genus, leaf size was positively associated with temperature and rainfall, consistent with previous observations. However, within species, the associations between leaf size and environmental variables were weaker.

Conclusions: CNNs detected and measured leaves with levels of accuracy useful for trait extraction and analysis and illustrate the potential for machine learning of herbarium specimens to massively increase global leaf trait data sets. Within-species relationships were weak, suggesting that population history and gene flow have a strong effect at this level. Herbarium specimens and machine learning could expand sampling of trait data within many species, offering new insights into trait evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.16167DOI Listing

Publication Analysis

Top Keywords

machine learning
16
herbarium specimens
16
leaf size
16
learning herbarium
8
leaf trait
8
data sets
8
digitized herbarium
8
model trained
8
training method
8
trait data
8

Similar Publications

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

Application of Machine Learning to Predict CO Emissions in Light-Duty Vehicles.

Sensors (Basel)

December 2024

Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.

View Article and Find Full Text PDF

Real-Time Freezing of Gait Prediction and Detection in Parkinson's Disease.

Sensors (Basel)

December 2024

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Freezing of gait (FOG) is a walking disturbance that can lead to postural instability, falling, and decreased mobility in people with Parkinson's disease. This research used machine learning to predict and detect FOG episodes from plantar-pressure data and compared the performance of decision tree ensemble classifiers when trained on three different datasets. Dataset 1 ( = 11) was collected in a previous study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!