The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120069 | PMC |
http://dx.doi.org/10.1073/pnas.2221253120 | DOI Listing |
Bioorg Med Chem
October 2024
CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France. Electronic address:
The decline of antibiotics efficacy worldwide has recently reached a critical point urging for the development of new strategies to regain upper hand on multidrug resistant bacterial strains. In this context, the raise of photodynamic therapy (PDT), initially based on organic photosensitizers (PS) and more recently on organometallic PS, offers promising perspectives. Many PS exert their biological effects through the generation of reactive oxygen species (ROS) able to freely diffuse into and to kill surrounding bacteria.
View Article and Find Full Text PDFSci Rep
August 2024
CNRS, UMR7242, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
Siderophores are specialized molecules produced by bacteria and fungi to scavenge iron, a crucial nutrient for growth and metabolism. Catecholate-type siderophores are mainly produced by bacteria, while hydroxamates are mostly from fungi. This study investigates the capacity of nine hydroxamate-type siderophores from fungi and Streptomyces to facilitate iron acquisition by the human pathogen Pseudomonas aeruginosa.
View Article and Find Full Text PDFGeroscience
October 2024
Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive.
View Article and Find Full Text PDFSci Rep
November 2023
CNRS, UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, 67412, Illkirch, Strasbourg, France.
Iron is a key nutrient for bacterial growth. The source can be either heme or siderophore-Fe complexes. Siderophores are small molecules synthesized by bacteria to scavenge iron from the bacterial environment.
View Article and Find Full Text PDFChemistry
September 2023
Faculty of Chemistry and Biochemistry, Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, Bochum, Germany.
A series of new conjugates comprised from a small synthetic antimicrobial peptide (AMP) and a siderophore-type vector component was designed and tested for activity on P. aeruginosa PAO1 and several genetically modified strains. As AMP, the well-established arginine-tryptophane combination K(RW) (P1) was chosen with an added lysine for siderophore attachment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!