Increasing knowledge on human balance recovery strategies is important for the development of balance assistance strategies using assistive devices like a powered lower-limb exoskeleton. One of the postures which is relevant for this scenario, but underexposed in research, is staggered stance, a posture with one foot in front. We therefore aimed to gain a better understanding of balance recovery in staggered stance. We studied balance responses at joint- and muscle levels to pelvis perturbations in various directions while standing in this posture. Ten healthy individuals participated in this study. We used one actuator beside and one behind the participant to apply 150 ms perturbations in mediolateral (ML), anteroposterior (AP) and diagonal directions, with a magnitude of 3, 6, 9 and 12% of the participant's body weight (BW). Meanwhile, motion capture, ground reaction forces and moments, and electromyography of the muscles around the ankles and hips were recorded. The perturbations caused movements of the centre of mass (CoM) and centre of pressure (CoP) in the direction of the perturbation. These were often accompanied by motions in a direction different from the perturbation direction. After perturbations perpendicular to the line between both feet, large and significant AP deviations were present of the CoM (-0.27 till 0.40 cm/%BW, p < 0.029) and CoP (-0.99 till 0.80 cm/%BW, p < 0.001). Also, stronger responses on joint and muscle level were present after these perturbations, compared to AP and diagonal perturbations collinear with the line between both feet. The hip, knee and ankle joints contributed differently to the balance responses after the different perturbation directions. To conclude, standing in a staggered stance posture makes individuals more vulnerable to perturbations perpendicular to the line between both feet, requiring larger responses on joint level as well as contributions in the sagittal plane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096271PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272245PLOS

Publication Analysis

Top Keywords

staggered stance
16
pelvis perturbations
8
perturbations directions
8
directions standing
8
standing staggered
8
balance recovery
8
stance posture
8
balance responses
8
direction perturbation
8
perturbations perpendicular
8

Similar Publications

Article Synopsis
  • - The study examined how spinal sensorimotor circuits in cats interact with other body inputs to manage walking, focusing on how spinal cord injuries disrupt these processes.
  • - After performing staggered injuries on the spinal cord, the researchers found that cats could recover some quadrupedal movement but needed help with balance, and their limb coordination became less stable.
  • - Despite significant challenges to coordination and posture after injuries, cats showed quick recovery of hindlimb movement, highlighting the importance of lumbar spinal circuits in regaining locomotion.
View Article and Find Full Text PDF

Increasing knowledge on human balance recovery strategies is important for the development of balance assistance strategies using assistive devices like a powered lower-limb exoskeleton. One of the postures which is relevant for this scenario, but underexposed in research, is staggered stance, a posture with one foot in front. We therefore aimed to gain a better understanding of balance recovery in staggered stance.

View Article and Find Full Text PDF

Unlabelled: Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the fore-and hindlimbs. Spinal cord injury disrupts these pathways.

View Article and Find Full Text PDF

Weakley, J, McCosker, C, Chalkley, D, Johnston, R, Munteanu, G, and Morrison, M. Comparison of sprint timing methods on performance, and displacement and velocity at timing initiation. J Strength Cond Res 37(1): 234-238, 2023-Sprint testing is commonly used to assess speed and acceleration in athletes.

View Article and Find Full Text PDF

Linear acceleration is a key performance determinant and major training component of many sports. Although extensive research about lower limb kinetics and kinematics is available, consistent definitions of distinctive key body positions, the underlying mechanisms and their related movement strategies are lacking. The aim of this 'Method and Theoretical Perspective' article is to introduce a conceptual framework which classifies the sagittal plane 'shin roll' motion during accelerated sprinting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!