A Gram-stain negative, strictly aerobic, and rod-shaped bacterium, designated as strain L182, was isolated from coastal sediment in Beihai, Guangxi Province, PR China. Colonies of strain L182 were yellow, 2 mm in diameter, round, opaque, smooth and convex after incubation on marine ager at 30 °C for 3 days. Cells were catalase-positive but oxidase-negative. Growth of strain L182 was observed at 4-40 °C (optimum, 25 °C), pH 5.5-10.0 (optimum, pH 5.5-8.0) and with 0-6% (w/v) NaCl (optimum, 0.5-4.0%). The G + C content based on the genome sequence was 36.0%. The only respiratory quinone was MK-6. The main polar lipids included phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, one unidentified glycolipids, four unidentified aminolipids and six unidentified lipids. The major fatty acids (> 10%) were iso-C, iso-C G and iso-C 3-OH. The 16S rRNA gene sequence similarity between strain L182 and Aestuariibaculum suncheonense SC17 was 98.2%, and the similarities with other type strains of the genus Aestuariibaculum were 96.1-97.2%. The average nucleotide identity and in silicon DNA-DNA hybridization values between the strain L182 and its closely related Aestuariibaculum species were 80.8-85.2% and 22.0-29.5%. According to the above results, Aestuariibaculum lutulentum sp. nov. was proposed as a novel species. The type strain is L182 (= MCCC 1K08065 = KCTC 92530).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-023-03535-7 | DOI Listing |
BMC Microbiol
September 2024
Department of Health Science and Technology, ETH Zurich, Institute of Food, Nutrition and Health, Laboratory of Food Biotechnology, Schmelzbergstrasse 7, Zurich, 8092, Switzerland.
Background: Folate (vitamin B9) occurs naturally mainly as tetrahydrofolate (THF), methyl-tetrahydrofolate (M-THF), and formyl-tetrahydrofolate (F-THF), and as dietary synthetic form (folic acid). While folate auxotrophy and prototrophy are known for several gut microbes, the specific folate forms produced by gut prototrophs and their impact on gut auxotrophs and microbiota remain unexplored.
Methods: Here, we quantified by UHPLC-FL/UV folate produced by six predicted gut prototrophs (Marvinbryantia formatexigens DSM 14469, Blautia hydrogenotrophica 10507 , Blautia producta DSM 14466, Bacteroides caccae DSM 19024, Bacteroides ovatus DSM 1896, and Bacteroides thetaiotaomicron DSM 2079 ) and investigated the impact of different folate forms and doses (50 and 200 µg/l) on the growth and metabolism of the gut auxotroph Roseburia intestinalis in pure cultures and during fecal anaerobic batch fermentations (48 h, 37 °C) of five healthy adults.
Arch Microbiol
April 2023
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
Elife
October 2018
Laboratory of Molecular Bacteriology, KU Leuven Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.
The composition of the human gut microbiome is well resolved, but predictive understanding of its dynamics is still lacking. Here, we followed a bottom-up strategy to explore human gut community dynamics: we established a synthetic community composed of three representative human gut isolates ( L1-82, A2-165 and S5a33) and explored their interactions under well-controlled conditions in vitro. Systematic mono- and pair-wise fermentation experiments confirmed competition for fructose and cross-feeding of formate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!