Engineering anti-adhesion coatings always focuses on a specific hierarchy and surface free energy, which passively endures water scouring to wash away the loosely attached foulants. Certain foulants, however, especially those that are highly adhesive or covalently attached on the coatings, cannot be removed off the designed surfaces easily. Inspired by the active self-hunting behavior of the filter-feeding animal Daphnia, herein, we propose a universal antifouling strategy with both passive and active adhesion repellency capabilities. The premise for this protocol is that the as-fabricated liquid-like surface is able to repel the settlement of general foulants upon static conditions. Under steady thermal stimuli, the dynamic liquid-like surface behaves like a boxer with an active prevention ability against highly adhesive foulant adhesion, , proteins, crude oils, and even covalently adhered mussel species. The enhanced biocide-free anti-adhesion performance is attributed to the reversible non-covalent interactions of pollutants in the initial contact with the surface, which was innovatively proved by AFM tapping tests to elucidate the physicochemical interactions between the foulants and coating surfaces. We envision that such an active anti-covalent adhesion surface may have great potential in diverse fields, including marine antifouling, fluid handling and transportation, and energy-harvesting devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3tb00154g | DOI Listing |
Hum Genomics
January 2025
Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
Background: The Immunoglobulin Heavy Chain (IGH) genomic region is responsible for the production of circulating antibodies and warrants careful investigation for its association with COVID-19 characteristics. Multiple allelic variants within and across different IGH gene segments form a limited set of haplotypes. Previous studies have shown associations between some of these haplotypes and clinical outcomes of COVID-19.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Manipal Academy of Higher Education, Manipal, Karnataka, India.
Background: Most children experience distress while visiting a dentist, above which the sound of the airotor and suction machine results in fear and difficulty in performing further procedures.
Methods: This was a randomized controlled parallel-group study of 40 children aged 6-13 years who required cavity preparation via the airotor. The children were randomly allocated to either Group 1 (Piano music app; active distraction combined with audio analgesia) or Group 2 (basic behavioural guidance alone).
BMC Complement Med Ther
January 2025
Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India.
The spreading of COVID-19 has posed a risk to global health, especially for lung cancer patients. An investigation is needed to overcome the challenges of COVID-19 pathophysiology and lung cancer disease. This study was designed to evaluate the phytoconstituents in Punica granatum peel (PGP), its anti-lung cancer activity, and in silico evaluation for antiviral potential.
View Article and Find Full Text PDFBMC Public Health
January 2025
Centre for Prevention, Lifestyle and Health, National Institute for Public Health and The Environment, Bilthoven, The Netherlands.
Background: A new paradigm of hybrid working exists, with most office workers sharing their work between the office and home office environment. Working from home increases time spent or prolonged sitting, which is associated with an increased risk of chronic disease. Interventions to reduce sitting time, specifically designed for both the office and home-office environments, are required to address this growing public health issue.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Level 1, Oxford Heart Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
Background: Preterm birth (< 37 weeks' gestation) alters cerebrovascular development due to the premature transition from a foetal to postnatal circulatory system, with potential implications for future cerebrovascular health. This study aims to explore potential differences in the Circle of Willis (CoW), a key arterial ring that perfuses the brain, of healthy adults born preterm.
Methods: A total of 255 participants (108 preterm, 147 full-term) were included in the analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!