Characterization of Two Marine Lignin-Degrading Consortia and the Potential Microbial Lignin Degradation Network in Nearshore Regions.

Microbiol Spectr

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Published: June 2023

AI Article Synopsis

  • The study investigates the role of marine bacteria in degrading lignin, a complex organic carbon compound important to the ocean carbon cycle, focusing on two bacterial consortia (LIG-B and LIG-S) obtained from nearshore sediments in China.
  • Consortium LIG-B showed a higher lignin degradation capacity (max 57%) compared to LIG-S (max 18%), with both consortia producing enzymes that break down lignin into smaller fragments.
  • The research reveals that both consortia possess catabolic genes for lignin degradation, and highlights that while terrestrial lignin enters the oceanic system, its levels remain low due to the active involvement of microorganisms in its decomposition

Article Abstract

Terrestrial organic carbon such as lignin is an important component of the global marine carbon. However, the structural complexity and recalcitrant nature of lignin are deemed challenging for biodegradation. It has been speculated that bacteria play important roles in lignin degradation in the marine system. However, the extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, two bacterial consortia capable of degrading alkali lignin (a model compound of lignin), designated LIG-B and LIG-S, were enriched from the nearshore sediments of the East and South China Seas. Consortia LIG-B and LIG-S mainly comprised of the phylum with sp. (71.6%) and sp. (91.6%), respectively. Lignin degradation was found more favorable in consortium LIG-B (max 57%) than in LIG-S (max 18%). Ligninolytic enzymes laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) capable of decomposing lignin into smaller fragments were all active in both consortia. The newly emerged low-molecular-weight aromatics, organic acids, and other lignin-derived compounds in biotreated alkali lignin also evidently showed the depolymerization of lignin by both consortia. The lignin degradation pathways reconstructed from consortium LIG-S were found to be more comprehensive compared to consortium LIG-B. It was further revealed that catabolic genes, involved in the degradation of lignin and its derivatives through multiple pathways via protocatechuate and catechol, are present not only in lignin-degrading consortia LIG-B and LIG-S but also in 783 publicly available metagenomic-assembled genomes from nine nearshore regions. Numerous terrigenous lignin-containing plant materials are constantly discharged from rivers and estuaries into the marine system. However, only low levels of terrigenous organic carbon, especially lignin, are detected in the global marine system due to the abundance of active heterotrophic microorganisms driving the carbon cycle. Simultaneously, the lack of knowledge on lignin biodegradation has hindered our understanding of the oceanic carbon cycle. Moreover, bacteria have been speculated to play important roles in the marine lignin biodegradation. Here, we enriched two bacterial consortia from nearshore sediments capable of utilizing alkali lignin for cell growth while degrading it into smaller molecules and reconstructed the lignin degradation network. In particular, this study highlights that marine microorganisms in nearshore regions mostly undergo similar pathways using protocatechuate and catechol as ring-cleavage substrates to drive lignin degradation as part of the oceanic carbon cycle, regardless of whether they are in sediments or water column.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269927PMC
http://dx.doi.org/10.1128/spectrum.04424-22DOI Listing

Publication Analysis

Top Keywords

lignin degradation
28
lignin
20
carbon cycle
16
nearshore regions
12
marine system
12
oceanic carbon
12
alkali lignin
12
lig-b lig-s
12
lignin-degrading consortia
8
degradation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!