A new strategy for the prediction of binding free energies of protein-protein complexes is reported in the present article. By combining an ergodic-sampling algorithm with the so-called "geometrical route", which introduces a series of geometrical restraints as a preamble to the physical separation of the two partners, we achieve accurate binding free energy calculations for medium-sized protein-protein complexes within the microsecond timescale. The ergodic-sampling algorithm, namely, Gaussian-accelerated molecular dynamics (GaMD), implicitly helps explore the conformational change of the two binding partners as they associate reversibly by raising the energy wells. Therefore, independent simulations capturing the isomerization of proteins are no longer needed, reducing both the computational cost and human effort. Numerical applications indicate errors on the order of 0.1 kcal/mol for the Abl-SH3 domain binding a decapeptide, of 2.6 kcal/mol for the barnase-barstar complex, and of 0.2 kcal/mol for human leukocyte elastase binding the third domain of the turkey ovomucoid inhibitor. Compared with the classical geometrical route, which resorts to collective variables to describe the isomerization of proteins, our new strategy possesses remarkable convergence properties and robustness for protein-protein complexes owing to improved ergodic sampling. We are confident that the strategy presented in this study will have a broad range of applications, helping us understand recognition-association phenomena in the areas of physical, biological, and medicinal chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c00487 | DOI Listing |
Eur J Clin Invest
January 2025
Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.
View Article and Find Full Text PDFThromb J
January 2025
Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
The REAADS VWF activity assay is often assumed to be specific for the A1 domain, the portion of VWF that binds platelet GPIbα. We tested this assay on the A1A2A3 region of VWF with each domain expressed independently of one another and together in combination as a tri-domain. The monoclonal antibody used in this assay is found to be insensitive to the single A domains and does not recognize free A1 domains as it is often assumed.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Surgery, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
The pro-tumor effects of mast cell (MC) in the tumor microenvironment (TME) are becoming increasingly clear. Recently, MC were shown to contribute to tumor malignancy by supporting the migration of tumor-associated macrophages (TAMs), suggesting a relationship with tumor immunity. In the current study, we aimed to examine the correlation between MC infiltration and neoadjuvant chemoradiotherapy (nCRT) response for locally advanced rectal cancer (LARC).
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China. Electronic address:
The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!