Correction for 'Study of highly stable electrochemiluminescence from [Ru(bpy)]/dicyclohexylamine and its application in visualizing sebaceous fingerprint' by Mathavan Sornambigai , , 2022, , 7305-7308, https://doi.org/10.1039/D2CC01929A.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cc90127kDOI Listing

Publication Analysis

Top Keywords

highly stable
8
stable electrochemiluminescence
8
electrochemiluminescence [rubpy]/dicyclohexylamine
8
[rubpy]/dicyclohexylamine application
8
application visualizing
8
visualizing sebaceous
8
correction study
4
study highly
4
sebaceous fingerprint
4
fingerprint correction
4

Similar Publications

An Adsorbent for Efficient and Rapid Gold Recovery from Solution: Adsorption Properties and Mechanisms.

Langmuir

January 2025

College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.

Adsorption is an efficient and highly selective method for gold recovery. Introducing rich N/S organic groups to combine with metal-organic frameworks (MOFs) as adsorbents is regarded as a practical and efficient approach to enhance gold recovery. Herein, a MOF (zirconium isothiocyanatobenzenedicarboxylate MOF, UiO-66-NCS) was designed to combine with amidinothiourea (AT) to form UiO-66-AT (zirconium amidothiourea-benzenedicarboxylate MOF) for efficient and rapid adsorption.

View Article and Find Full Text PDF

Multiparticulate drug delivery systems offer advantages in controlled release, dose flexibility, and personalized medicine. Fusion prilling, a process that produces spherical lipid-based microparticles through vibrating nozzles, is gaining interest in the field. This study aims to explore the use of fusion prilling to encapsulate crystallizable water-in-oil emulsions, enabling the incorporation of hydrophilic active pharmaceutical ingredients (APIs) within lipid matrices.

View Article and Find Full Text PDF

Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported.

View Article and Find Full Text PDF

Optimized detection of calcium ion in serum using constant potential coulometry with metastable liquid-liquid contact doping enhanced PEDOT: PSS ink.

Bioelectrochemistry

January 2025

School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.

Highly stable calcium ion selective electrodes (Ca-ISEs) were developed by drop-casting a layer of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as an ion-to-electron transfer layer onto Au electrode. The conductive PEDOT: PSS ink was prepared using a metastable liquid-liquid contact (MLLC) doping method, which induced phase separation, removed excess PSS, and significantly enhanced charge transfer kinetics and conductivity. The resulting Ca-ISEs exhibited excellent electrochemical performance.

View Article and Find Full Text PDF

Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Nanotechnology

January 2025

Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!