The development of the field of soft robotics has led to the exploration of novel techniques to manufacture soft actuators, which provide distinct advantages for wearable assistive robotics. One subset of these soft pneumatic actuators is conventionally developed from silicone, fabrics, and thermoplastic polyurethane (TPU). Each of these materials in isolation possesses limitations of low-stress capacity, low-design complexity, and high-input pressure requirements, respectively. Combining these materials can overcome some limitations and maintain their desirable properties. In this article, we explore one such composite design scheme using a combination of silicone polymer-based bladder and reconfigurable fabric skin made from an anisotropic extensible fabric. The silicone polymer bladder acts as the hermetic seal, while this skin acts as the constraint. Bending and torsional actuators were designed utilizing the anisotropy of these fabrics. The torsional actuator designs can achieve over 540° of twist, significantly larger than previously reported in the literature, owing to the lower mechanical impedance of the extensible fabrics. Actuators with 360° of bending were also fabricated using this method. In addition, the lack of TPU-backed or inextensible fabrics reduces the actuator's stiffness, leading to lower actuation pressures. Skin-based designs also confer the advantage of modularity, reconfigurability, and the ability to achieve complex motions by tuning the properties of the bladder and the skin. For applications with high-force requirements, such as wearable exoskeletons, we demonstrate the utility of multilayer design schemes. A multilayer bending actuator generated 190 N of force at 100 kPa and was shown to be a candidate for wearable assistive devices. In addition, torsional designs were shown to have utility in practical scenarios such as screwing on a bottle cap and turning knobs. Thus, we present a novel fabric-skin-based design concept that is highly versatile and customizable for various application requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2022.0089DOI Listing

Publication Analysis

Top Keywords

soft pneumatic
8
pneumatic actuators
8
wearable assistive
8
actuators
5
reconfigurable soft
4
actuators extensible
4
extensible fabric-based
4
fabric-based skins
4
skins development
4
development field
4

Similar Publications

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

In this work, a cost-effective, scalable pneumatic silicone actuator array is introduced, designed to dynamically conform to the user's skin and thereby alleviate localised pressure within a prosthetic socket. The appropriate constitutive models for developing a finite element representation of these actuators are systematically identified, parametrised, and validated. Employing this computational framework, the surface deformation fields induced by 270 variations in soft actuator array design parameters under realistic load conditions are examined, achieving predictive accuracies within 70 µm.

View Article and Find Full Text PDF

An esophageal stent integrated with wireless battery-free movable photodynamic-therapy unit for targeted tumor treatment.

Mater Today Bio

February 2025

Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.

Article Synopsis
  • Esophageal cancer ranks as the eighth most common type of cancer globally and is the sixth leading cause of cancer-related deaths.
  • The study introduces an innovative esophageal stent that features a wireless, battery-free, movable photodynamic therapy (PDT) unit, designed for flexible and precise treatment of esophageal tumors.
  • The system integrates a light source for PDT to induce tumor cell death and an electrochemical pneumatic actuator that allows for real-time positioning of the light source, improving targeted therapy based on tumor progression.
View Article and Find Full Text PDF

Development of a Self-Deploying Extra-Aortic Compression Device for Medium-Term Hemodynamic Stabilization: A Feasibility Study.

Adv Sci (Weinh)

December 2024

Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia.

Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.

View Article and Find Full Text PDF

An Octopus-Inspired Soft Pneumatic Robotic Arm.

Biomimetics (Basel)

December 2024

Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece.

Article Synopsis
  • The paper discusses a soft robot arm inspired by the octopus, focusing on its design and control methods.
  • The arm, made of soft silicone, features multiple pneumatically actuated chambers that allow for versatile bending, length adjustment, and twisting motions.
  • The design includes experimental evaluation techniques that utilize visual feedback to track the arm's shape and position in real time.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!