Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The commercialization pace of aqueous zinc batteries (AZBs) is seriously limited due to the uncontrolled dendrite growth and severe corrosion reaction of the zinc anode. Herein, a universal and extendable saturated fatty acid-zinc interfacial layer strategy for modulating the interfacial redox process of zinc toward ultrastable Zn metal anodes is proposed. The in situ complexing of saturated fatty acid-zinc interphases could construct an extremely thin zinc compound layer with continuously constructed zincophilic sites which kinetically regulates Zn nucleation and deposition behaviors. Furthermore, the multifunctional interfacial layer with internal hydrophobic carbon chains as a protective layer is efficient to exclude active water molecules from the surface and efficiently inhibit the surface corrosion of zinc. Consequently, the modified anode shows a long cycle life of over 4000 h at 5 mA cm. In addition, the assembled Zn||VO full cells based on modified zinc anodes have excellent rate performance and long cycle stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c00741 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!