A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating the hemodynamics of Berlin Heart EXCOR support in Norwood patients across diverse clinical scenarios with computational modeling. | LitMetric

Investigating the hemodynamics of Berlin Heart EXCOR support in Norwood patients across diverse clinical scenarios with computational modeling.

Artif Organs

Chemistry, Materials and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Milan, Italy.

Published: July 2023

Background: Infants with single-ventricle (SV) physiology undergo the 3-stage Fontan surgery. Norwood patients, who have completed the first stage, face the highest interstage mortality. The Berlin Heart EXCOR (BH), a pediatric pulsatile ventricular assist device, has shown promise in supporting these patients. However, clinical questions regarding device configurations prevent optimal support.

Methods: We developed a combined idealized mechanics-lumped parameter model of a Norwood patient and simulated two additional patient-specific cases: pulmonary hypertension (PH) and post-operative treatment with milrinone. We quantified the effects of BH support across different device volumes, rates, and inflow connections on patient hemodynamics and BH performance.

Results: Increasing device volume and rate increased cardiac output, but with unsubstantial changes in specific arterial oxygen content. We identified distinct SV-BH interactions that may impact patient myocardial health and contribute to poor clinical outcomes. Our results suggested BH settings for patients with PH and for patients treated post-operatively with milrinone.

Conclusions: We present a computational model to characterize and quantify patient hemodynamics and BH support for infants with Norwood physiology. Our results emphasized that oxygen delivery does not increase with BH rate or volume, which may not meet patient needs and contribute to suboptimal clinical outcomes. Our findings demonstrated that an atrial BH may provide optimal cardiac loading for patients with diastolic dysfunction. Meanwhile, a ventricular BH decreased active stress in the myocardium and countered the effects of milrinone. Patients with PH showed greater sensitivity to device volume. In this work, we demonstrate the adaptability of our model to analyze BH support across varied clinical situations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.14544DOI Listing

Publication Analysis

Top Keywords

berlin heart
8
heart excor
8
norwood patients
8
patient hemodynamics
8
device volume
8
clinical outcomes
8
patients
7
clinical
5
device
5
patient
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!