A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amyloid fibril formation, structure and domain swapping of acyl-coenzyme A thioesterase-7. | LitMetric

Acyl-coenzyme A thioesterase (Acot) enzymes are involved in a broad range of essential intracellular roles including cell signalling, lipid metabolism, inflammation and the opening of ion channels. Dysregulation in lipid metabolism has been linked to neuroinflammatory and neurological disorders such as Alzheimer's and Parkinson's diseases. Structurally, Acot enzymes adopt a circularised trimeric arrangement with each monomer containing an N- and a C-terminal hotdog domain. Acot7 spontaneously forms amyloid fibrils in vitro under physiological conditions. The resultant amyloid fibrillar structures were characterised by dye-binding fluorescence assays, far-UV circular dichroism spectroscopy, transmission electron microscopy and X-ray fibre diffraction. Acot7 has an unusual mechanism of aggregation with no lag phase. The initial phase (~ 18 h) of aggregation involves conformational rearrangement within the oligomers to form species of enhanced β-sheet character. The subsequent loss of α-helical structure is accompanied by large-scale amyloid fibril formation. The crystal structure of Acot7 revealed an unexpected arrangement of the two domains within the circularised trimeric structure, which is the basis for a proposed mechanism of amyloid fibril formation involving domain swapping during the initial phase of aggregation. Acot7 formed fibrils in the presence of its substrate arachidonoyl-CoA and its inhibitors and maintained its enzyme activity during fibril assembly. It is proposed that the Acot7 fibrillar form acts as functional amyloid.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.16795DOI Listing

Publication Analysis

Top Keywords

amyloid fibril
12
fibril formation
12
domain swapping
8
acot enzymes
8
lipid metabolism
8
circularised trimeric
8
initial phase
8
amyloid
6
acot7
5
structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!