Administration methods of lipid-based nanoparticle delivery systems for cancer treatment.

Biomater Sci

Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410013, China.

Published: May 2023

As nano medications have developed in the recent four decades, nano-delivery systems have been applied in treating various diseases and are especially common in cancer treatment. Nano-delivery systems could target cancer-associated cells, enhance the accuracy and efficacy of treatment, and reduce systemic side effects. Among the many drugs on nano-carriers, the load system of lipid-based nanoparticles has the brightest prospect due to the high level of biocompatibility, biodegradability, loading capability, and immunogenicity. Previous reviews have comprehensively introduced their effects and progress. However, most of them did not provide great attention to practical applications. This article will focus on different intake methods, which decide the biological process of drugs. This suggests that we can modify lipid-based nano-delivery systems according to how they are capable of prolonging the half-life span and magnifying therapy effects in treating cancer. Besides, we put forth the problems that should be further studied in the future and their probable solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3bm00219eDOI Listing

Publication Analysis

Top Keywords

nano-delivery systems
12
cancer treatment
8
administration methods
4
methods lipid-based
4
lipid-based nanoparticle
4
nanoparticle delivery
4
systems
4
delivery systems
4
systems cancer
4
treatment nano
4

Similar Publications

In recent years, the use of traditional Chinese medicine (TCM) in the treatment of cancer has received widespread attention. Treatment of tumors using TCM can effectively reduce the side effects of anti-tumor drugs, meanwhile to improve the treatment efficacy of patients. However, most of the active ingredients in TCM, such as saponins, alkaloids, flavonoids, volatile oils, etc.

View Article and Find Full Text PDF

Nanotechnology-Enhanced Pharmacotherapy for Intervertebral Disc Degeneration Treatment.

Int J Nanomedicine

January 2025

Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi, 710000, People's Republic of China.

Intervertebral disc degeneration (IDD) is a primary contributor to chronic back pain and disability globally, with current therapeutic approaches often proving inadequate due to the complex nature of its pathophysiology. This review assesses the potential of nanoparticle-driven pharmacotherapies to address the intricate challenges presented by IDD. We initially analyze the primary mechanisms driving IDD, with particular emphasis on mitochondrial dysfunction, oxidative stress, and the inflammatory microenvironment, all of which play pivotal roles in disc degeneration.

View Article and Find Full Text PDF

A multifunctional graphene oxide-based nanodrug delivery system for tumor targeted diagnosis and treatment under chemotherapy-photothermal-photodynamic synergy.

Colloids Surf B Biointerfaces

December 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).

View Article and Find Full Text PDF

ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery.

Appl Biochem Biotechnol

December 2024

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu Jeonju, Jeonbuk, 54896, South Korea.

This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!