Supramolecular Copolymers Under Kinetic, Thermodynamic, or Pathway-Switching Control.

Angew Chem Int Ed Engl

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Material, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.

Published: July 2023

Supramolecular copolymers have attracted much attention due to their potential functionalities. However, the co-assembly strategies to construct co-assemblies of small molecules with well-defined sequence structures are still limited, especially for more complex crystalline block co-assemblies. Herein, we target this challenge by designing Ir complexes 1 and 2, which possess unique self-assembly pathways and are capable of forming crystalline assemblies in aqueous systems. Specifically, block and random co-assemblies of 1 and 2 can be synthesized by kinetic and thermodynamic control, respectively. Meanwhile, by adjusting the water content to orthogonalize the on-pathway and the off-pathway, an unprecedented pathway-switching approach is realized to synthesize block and random co-assemblies. By coupling the kinetic pathways, the present co-assembly strategies are expected to pave the way for the synthesis of crystalline co-assemblies of small molecules and the construction of organic heterostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202302581DOI Listing

Publication Analysis

Top Keywords

supramolecular copolymers
8
kinetic thermodynamic
8
co-assembly strategies
8
co-assemblies small
8
small molecules
8
block random
8
random co-assemblies
8
co-assemblies
5
copolymers kinetic
4
thermodynamic pathway-switching
4

Similar Publications

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.

View Article and Find Full Text PDF

The intermolecular host-guest complexation of head-to-tail monomers consisting of cleft-shaped bisporphyrin and trinitrofluorenone units connected by a chiral binaphthyl linker was employed to construct helically twisted supramolecular polymers. Results from 1H NMR, diffusion-ordered NMR spectroscopy, and viscometry experiments revealed that the supramolecular polymerization of these monomers follows a ring-chain competition mechanism. The introduction of bulky substituents at the linker significantly suppressed the formation of macrocyclic oligomers, whereas smaller alkyl chains facilitated the formation of the cyclic form.

View Article and Find Full Text PDF

The development of stimuli-responsive drug delivery systems enables targeted delivery and environment-controlled drug release, thereby minimizing off-target effects and systemic toxicity. We prepared and studied tailor-made dual-responsive systems (thermo- and pH-) based on synthetic diblock copolymers consisting of a fully hydrophilic block of poly[-(1,3-dihydroxypropyl)methacrylamide] (poly(DHPMA)) and a thermoresponsive block of poly[-(2,2-dimethyl-1,3-dioxan-5-yl)methacrylamide] (poly(DHPMA-acetal)) as drug delivery and smart stimuli-responsive materials. The copolymers were designed for eventual medical application to be fully soluble in aqueous solutions at 25 °C.

View Article and Find Full Text PDF

Helical magnetism in poly(aniline--ferrocene): structure and magnetism.

Nanoscale

December 2024

Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

This study reports the synthesis and characterisation of a ferrocene-based conjugated polymer and a chiral composite. The precursor copolymer was synthesised from 1,3-phenylenediamine and 1,1'-dibromoferrocene Buchwald-Hartwig polycondensation. This polymerisation process increased the effective conjugation length and led to magnetic spin interactions along the main chain, resulting in a ground triplet spin state at 25 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!