Background And Aim: The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that attacks the respiratory and digestive tract. The SARS-CoV-2 showed systemic characteristics with various clinical symptoms from subclinical to fatal (causing death). Transmission of SARS-CoV-2 has been reported to occur from humans to pets (cats, dogs, tigers, ferrets, and poultry). Knowledge about the role of domestic animals in the transmission of SARS-CoV-2 to humans, and as reservoirs of this virus needs to be investigated further. This study aimed to detect the presence of SARS-CoV-2 in domestic animals such as dogs, cats, pigs, cows, birds, and bats that are often in contact with humans.
Materials And Methods: A total of 157 samples, which included nasopharyngeal and oropharyngeal swabs, along with sera samples from domestic animals such as cats, pigs, cows, birds, and bats, were taken from Veterinary Hospitals, Veterinary Clinics, and farms around the Yogyakarta region. Detection of the virus was done using rapid detection of viral antigens, antibodies, and reverse transcriptase-polymerase chain reaction (RT-PCR) technique.
Results: The results showed that 5/157 (3.1%) samples found positive against the COVID-19 virus using a rapid antibody test; however, the results were negative on the rapid antigen and RT-PCR tests. Antibody-positive samples came from animals that had a history of household COVID-19 human infection.
Conclusion: Thus, findings of the present study conclude that there is a potential for transmission of the COVID-19 virus between animals and humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082720 | PMC |
http://dx.doi.org/10.14202/vetworld.2023.341-346 | DOI Listing |
Vet Immunol Immunopathol
December 2024
Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan. Electronic address:
The Hendra virus (HeV) has resulted in epidemics of respiratory and neurological illnesses in animals. Humans have contracted diseases with high fatality rates as a result of infected domestic animals, but effective vaccinations and therapies are currently not available against HeV. Herein, we analyzed the proteome of HeV and constructed an effective and innovative multi-epitope vaccine using immunoinformatics techniques.
View Article and Find Full Text PDFPLoS One
January 2025
Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Muenster, Germany.
Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.
View Article and Find Full Text PDFVet Res Commun
January 2025
Departamento de Salud Animal y Medicina Preventiva, Cuerpo Académico de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
Otobius megnini (spinose ear tick) is a cosmopolitan soft tick that parasitizes domestic and wild mammals, as well as humans. The larval and nymphal stages are common parasites that feed on blood inside the canal ears of hosts, while adults are nonfeeding and live off the host. Different nymphal stages of O.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
Background: Cardiovascular disease causes vascular dementia and contributes to most clinical dementia. This is embodied in the concept of vascular contributions to cognitive impairment and dementia (VCID). The potent endogenous peptide endothelin-1 (ET1) causes small artery vasoconstriction and fibrosis.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Department of Microbiology, Kogi State University, P.M.B. 1008 Anyigba, Nigeria.
Background: Globally, diarrhoeagenic Escherichia coli (DEC) has been implicated in the spread of waterborne diseases and abattoir wastewater has played a role in its dissemination into watersheds. This study isolated and characterised DEC from the abattoir wastewater-impacted Iyi-Etu River and other water sources at the Amansea livestock market settlement.
Methods: A total of 96 water samples comprising river water (upstream, downstream 1, downstream 2), borehole, well, sachet and abattoir wastewater samples were tested for DEC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!