Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Aim: is a Gram-negative bacterium belonging to the family that can cause bovine histophilosis. may act as a commensal or opportunistic bacterial cattle pathogen. Comparing genomes of the pathogenic strain 2336 with the non-pathogenic preputial 129Pt isolate revealed some putative virulence factors. The study of the complete genomes of strains circulating in Russia has never been conducted before. This study aimed to identify genetic features of the strains isolated in Russia and evaluate the possibility of using strains for vaccine development.
Materials And Methods: Three strains of were isolated from different sources. Strain 188-VIEV was isolated from a vaginal swab sample of cattle with endometritis. 532-VIEV and 551-VIEV were cultured from the cryopreserved bull semen samples imported from Canada. strain ATCC 700025 provided by ATCC (American Type Culture Collection) was also used in the study. DNA extraction was performed using QIAamp DNA Mini Kit (QIAGEN, USA). The whole-genome sequencing of the four strains was performed using Illumina Miseq. The comparison of the resulting sequences with the complete genomes of 2336 and 129Pt, and detection of the resistance genes and virulence factors, was performed using the ResFinder and Virulence Factor Database web services.
Results: The genome size of the samples varied from 1.9 to 2.3 Mb. The number of coding sequences varied from 1795 to 2256. The average sequence density was 90%. The total guanine-cytosine (GC) content was 36.8%-37.2%, which coincided with data previously obtained for . Three out of four studied strains encoded putative virulence factors such as filamentous hemagglutinin homologs, lipooligosaccharide biosynthesis proteins, and proteins involved in iron transport and utilization. The Ser83Ile substitution was identified in the DNA topoisomerase II () in strains 532-VIEV and 551-VIEV cultured from bull semen which led to resistance to fluoroquinolones. The gene ('') encoding a bifunctional aminoglycoside modification enzyme was detected in strain 551-VIEV.
Conclusion: Strains with virulence genes identified could be candidates for designing vaccines and potentially represent antigen sources. The results show that antibiotic-resistant can be spread with semen used for artificial insemination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082713 | PMC |
http://dx.doi.org/10.14202/vetworld.2023.272-280 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!