Assessment of nutritional properties and phenolic characterization of freshly harvested shoots and processed bamboo candy.

Food Sci Biotechnol

Food and Nutraceutical Laboratory, Dietetics and Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India.

Published: May 2023

The free and bound phenolic constituents in shoots were evaluated and compared to processed bamboo candy. Preliminary proximate analysis revealed a percent reduction in moisture and protein with a less significant change in fibre content. The fresh free phenolic extract (FFPE) exhibited a total phenolics of 131.22 mg GAE/g and recovered 48.29 mg GAE/g phenolic content in bound fraction (FBPE). Results demonstrated higher loss of free phenolics after processing compared to bound fraction (CBPE). Although similar results were observed in total flavonoid content. Antioxidant activity was reduced after candy processing, with fresh shoots having the lowest percent inhibition (IC) against DPPH and ABTS radicals. Although both free and bound fractions of candy demonstrated effective antioxidant activity. HPLC analysis revealed that FFPE contained more chlorogenic acid (0.14 mg/10 g) and cinnamic acid (0.75 mg/10 g) than CFPE. Quercetin was undetected in all free fractions but was found in bound form.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082696PMC
http://dx.doi.org/10.1007/s10068-022-01218-5DOI Listing

Publication Analysis

Top Keywords

processed bamboo
8
bamboo candy
8
free bound
8
analysis revealed
8
bound fraction
8
antioxidant activity
8
free
5
bound
5
assessment nutritional
4
nutritional properties
4

Similar Publications

Background: Non-structural carbohydrates (NSCs) are key substances for metabolic processes in plants, providing energy for growth, development, and responses to environmental stress. Pruning mother bamboo in a clump can significantly affect the NSCs allocation of new shoots, thereby affecting their growth. Moso bamboo (Phyllostachys edulis) is an important economic bamboo species with a highest planting area in China.

View Article and Find Full Text PDF

Bamboo fiber-derived carbon support for the immobilization of Pt nanoparticles to enhance hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China. Electronic address:

Biomass-derived carbon, as an excellent support, has received extensive attention. In this work, carbon matrix obtained from bamboo fiber (BF) is served as a supporting material for the immobilization of platinum (Pt) nanoparticles, leading to a substantial improvement in the hydrogen evolution reaction (HER). This approach leverages the remarkable surface area, outstanding conductivity, and environmentally friendly characteristics of BF-derived carbon, facilitating the dispersion and stability of the Pt nanoparticles.

View Article and Find Full Text PDF

Radiative Cooling Meta-Fabric Integrated with Knitting Perspiration-Wicking and Coating Heat Conduction.

ACS Nano

January 2025

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.

View Article and Find Full Text PDF

2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.

View Article and Find Full Text PDF

Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!