Cloning by somatic cell Nuclear Transfer (SCNT) is a powerful technology capable of reprograming terminally differentiated cells to totipotency for generating whole animals or pluripotent stem cells for use in cell therapy, drug screening, and other biotechnological applications. However, the broad usage of SCNT remains limited due to its high cost and low efficiency in obtaining live and healthy offspring. In this chapter, we first briefly discuss the epigenetic constraints responsible for the low efficiency of SCNT and current attempts to overcome them. We then describe our bovine SCNT protocol for delivering live cloned calves and addressing basic questions about nuclear reprogramming. Other research groups can benefit from our basic protocol and build up on it to improve SCNT in the future. Strategies to correct or mitigate epigenetic errors (e.g., correcting imprinting loci, overexpression of demethylases, chromatin-modifying drugs) can integrate the protocol described here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3064-8_12 | DOI Listing |
Methods Mol Biol
January 2025
Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.
Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.
View Article and Find Full Text PDFNat Rev Genet
January 2025
Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
Loss of Y chromosome (LOY) is the most commonly occurring post-zygotic (somatic) mutation in male individuals. The past decade of research suggests that LOY has important effects in shaping the activity of the immune system, and multiple studies have shown the effects of LOY on a range of diseases, including cancer, neurodegeneration, cardiovascular disease and acute infection. Epidemiological findings have been corroborated by functional analyses providing insights into the mechanisms by which LOY modulates the immune system; in particular, a causal role for LOY in cardiac fibrosis, bladder cancer and Alzheimer disease has been indicated.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA.
SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization.
View Article and Find Full Text PDFMol Cell
December 2024
Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
The efficacy of antibody responses is inherently linked to paratope diversity, as generated through V(D)J recombination and somatic hypermutation. Despite this, it is unclear how genetic diversification mechanisms evolved alongside codon optimality and affect antibody expression. Here, we analyze germline immunoglobulin (IG) genes, natural V(D)J repertoires, serum IgG, and monoclonal antibody (mAb) expression through the lens of codon optimality.
View Article and Find Full Text PDFGenome Biol
December 2024
Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Single-cell DNA sequencing (scDNA-seq) enables decoding somatic cancer variation. Existing methods are hampered by low throughput or cannot be combined with transcriptome sequencing in the same cell. We propose HIPSD&R-seq (HIgh-throughPut Single-cell Dna and Rna-seq), a scalable yet simple and accessible assay to profile low-coverage DNA and RNA in thousands of cells in parallel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!