Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to investigate the effects of short-term nitrogen and phosphorus addition on soil respiration and its components in a subalpine grassland located on the Qilian Mountains, a random block design of nitrogen[10 g·(m·a), N], phosphorus[5 g·(m·a), P], nitrogen and phosphorus addition[10 g·(m·a)N and 5 g·(m·a)P, NP], the control (CK), and complete control (CK') was conducted from June to August 2019, and total soil respiration and its component respiration rates were measured. The results showed that nitrogen addition reduced soil total respiration and heterotrophic respiration rates at a lower rate than P addition[-16.71% vs. -19.20%; -4.41% vs. -13.05%], but the rate of decrease in autotrophic respiration was higher than that of P addition (-25.03% vs. -23.36%); N and P mixed application had no significant effect on soil total respiration rate. The total soil respiration rate and its components were significantly exponentially correlated with soil temperature, and the temperature sensitivity of soil respiration rate was decreased by nitrogen addition (:-5.64%-0.00%). P increased (3.38%-6.98%), and N and P reduced autotrophic respiration rate but increased heterotrophic respiration rate (16.86%) and decreased total soil respiration rate (-2.63%- -2.02%). Soil pH, soil total nitrogen, and root phosphorus content were significantly correlated with autotrophic respiration rate (<0.05) but not with heterotrophic respiration rate, and root nitrogen content was significantly negatively correlated with heterotrophic respiration rate (<0.05). In general, autotrophic respiration rate was more sensitive to N addition, whereas heterotrophic respiration rate was more sensitive to P addition. Both N and P addition significantly reduced soil total respiration rate, whereas N and P mixture did not significantly affect soil total respiration rate. These results can provide a scientific basis for the accurate assessment of soil carbon emission in subalpine grassland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202205177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!