[Chemical Characteristics and Source Apportionment for VOCs During the Ozone Pollution Episodes and Non-ozone Pollution Periods in Qingdao].

Huan Jing Ke Xue

State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Published: April 2023

The ambient concentration of ozone is high in Qingdao, and ozone pollution episodes occur frequently in summer. The refined source apportionment of ambient volatile organic compounds (VOCs) and their ozone formation potential (OFP) during ozone pollution episodes and non-ozone pollution periods can play an important role in effectively reducing air ozone pollution in coastal cities and continuously improving ambient air quality. Therefore, this study applied the online VOCs monitoring data with hourly resolution in summer (from June to August) in 2020 in Qingdao to analyze the chemical characteristics of ambient VOCs during the ozone pollution episodes and non-ozone pollution periods and conducted the refined source apportionment of ambient VOCs and their OFP using a positive matrix factorization (PMF) model. The results showed that the average mass concentration of ambient VOCs in Qingdao in summer was 93.8 μg·m, and compared with that during the non-ozone pollution period, the mass concentration of ambient VOCs during the ozone pollution episodes increased by 49.3%, and the mass concentration of aromatic hydrocarbons increased by 59.7%. The total OFP of ambient VOCs in summer was 246.3 μg·m. Compared with that in the non-ozone pollution period, the total OFP of ambient VOCs in the ozone pollution episodes increased by 43.1%; that of alkanes increased the most, reaching 58.8%. M-ethyltoluene and 2,3-dimethylpentane were the species with the largest increase in OFP and its proportion during the ozone pollution episodes. The main contributors of ambient VOCs in Qingdao in summer were diesel vehicles (11.2%), solvent use (4.7%), liquefied petroleum gas and natural gas (LPG/NG) (27.5%), gasoline vehicles (8.9%), gasoline volatilization (26.6%), emissions of combustion- and petrochemical-related enterprises (16.4%), and plant emissions (4.8%). Compared with that in the non-ozone pollution period, the contribution concentration of LPG/NG in the ozone pollution episodes increased by 16.4 μg·m, which was the source category with the largest increase. The contribution concentration of plant emissions increased by 88.6% in the ozone pollution episodes, which was the source category with the highest increase rate. In addition, emissions from combustion- and petrochemical-related enterprises were the largest contributor to the OFP of ambient VOCs in summer in Qingdao, with its OFP and contribution proportion being 38.0 μg·mand 24.5%, respectively, followed by that of LPG/NG and gasoline volatilization. Compared with the non-ozone pollution period, the total contributions of LPG/NG, gasoline volatilization, and solvent use to the increase in OFP for ambient VOCs in the ozone pollution episodes were 74.1%, which were the main contribution source categories.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202205040DOI Listing

Publication Analysis

Top Keywords

ozone pollution
44
pollution episodes
40
ambient vocs
36
non-ozone pollution
28
vocs ozone
24
pollution
18
compared non-ozone
16
pollution period
16
ofp ambient
16
ozone
13

Similar Publications

Combined Catalytic Conversion of NOx and VOCs: Present Status and Prospects.

Materials (Basel)

December 2024

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.

This article presents a comprehensive examination of the combined catalytic conversion technology for nitrogen oxides (NOx) and volatile organic compounds (VOCs), which are the primary factors contributing to the formation of photochemical smog, ozone, and PM2.5. These pollutants present a significant threat to air quality and human health.

View Article and Find Full Text PDF

Trees growing in urban areas face increasing stress from atmospheric pollutants, with limited attention given to the early responses of young seedlings. This study aimed to address the knowledge gap regarding the effects of simulated pollutant exposure, specifically particulate matter (PM), elevated ozone (O), and carbon dioxide (CO) concentrations, on young seedlings of five tree species: Scots pine ( L.); Norway spruce ( (L.

View Article and Find Full Text PDF

An ex vivo model of systemically-mediated effects of ozone inhalation on the brain.

Toxicology

January 2025

Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. Electronic address:

Air pollution is associated with increased risk of neurodegenerative and neuropsychiatric conditions. While animal models have increased our understanding of how air pollution contributes to brain pathologies - including through oxidative stress, inflammatory, and stress hormone pathways - investigation of underlying mechanisms remains limited due to a lack of human-relevant models that incorporate systemic processes. Our objective was to establish an ex vivo approach that enables assessment of the roles of plasma mediators in pollutant-induced effects in the brain.

View Article and Find Full Text PDF

The short-term comprehensive impact of the phase-out of global coal combustion on air pollution and climate change.

Environ Pollut

January 2025

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California, 90095, USA.

With the continuous intensification of global warming, the reduction and ultimate phase-out of coal combustion is an inevitable trend in the future global energy transformation. This study comprehensively analyzed the impact of phasing out coal combustion on global emissions and concentrations of air pollutants, radiative fluxes, meteorology and climate using Community Earth System Model 2 (CESM2). The results indicate that after the global phase-out of coal combustion, there is a marked decrease in the concentrations of sulfur dioxide (SO), nitrogen oxides (NO) and fine particulate matter (PM), with some regions experiencing a reduction of exceeding 50%.

View Article and Find Full Text PDF

As an essential component of urban natural sources, isoprene has strong interactions and synergies with anthropogenic precursors (volatile organic compounds and nitrogen oxides) of ozone (O), influencing O formation in urban areas. However, the variability of these effects under different anthropogenic emission scenarios has not been fully understood. This study, utilizing observational data from Dezhou (a medium-sized city in the center of North China Plain) from May to September in both 2019 and 2020, and incorporating four future scenarios based on Shared Socioeconomic Pathways (SSP1-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!