There has been an increasing use of advanced materials, particularly manufactured nanomaterials, in industrial applications and consumer products in the last two decades. It has instigated concerns about the sustainability, in particular, risks and uncertainties regarding the interactions of the manufactured nanomaterials with humans and the environment. Consequently, significant resources in Europe and beyond have been invested into the development of tools and methods to support risk mitigation and risk management, and thus facilitate the research and innovation process of manufactured nanomaterials. The level of risk analysis is increasing, including assessment of socio-economic impacts, and sustainability aspects, moving from a conventional risk-based approach to a wider safety-and-sustainability-by-design perspective. Despite these efforts on tools and methods development, the level of awareness and use of most of such tools and methods by stakeholders is still limited. Issues of regulatory compliance and acceptance, reliability and trust, user-friendliness and compatibility with the users' needs are some of the factors which have been traditionally known to hinder their widespread use. Therefore, a framework is presented to quantify the readiness of different tools and methods towards their wider regulatory acceptance and downstream use by different stakeholders. The framework diagnoses barriers which hinder regulatory acceptance and wider usability of a tool/method based on their Transparency, Reliability, Accessibility, Applicability and Completeness (TRAAC framework). Each TRAAC pillar consists of criteria which help in evaluating the overall quality of the tools and methods for their (i) compatibility with regulatory frameworks and (ii) usefulness and usability for end-users, through a calculated TRAAC score based on the assessment. Fourteen tools and methods were assessed using the TRAAC framework as proof-of-concept and for user variability testing. The results provide insights into any gaps, opportunities, and challenges in the context of each of the 5 pillars of the TRAAC framework. The framework could be, in principle, adapted and extended to the evaluation of other type of tools & methods, even beyond the case of nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242441PMC
http://dx.doi.org/10.1016/j.impact.2023.100461DOI Listing

Publication Analysis

Top Keywords

tools methods
32
traac framework
16
manufactured nanomaterials
16
regulatory acceptance
12
acceptance wider
8
wider usability
8
tools
8
methods
8
traac
6
framework
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!