Mechanism of direct UV photolysis of the tricyclic antidepressant carbamazepine (CBZ) at neutral pH was revealed by a combination of nanosecond laser flash photolysis, steady-state photolysis combined with high resolution LC-MS and DFT quantum-chemical calculations. The detection of short-lived intermediates and the detailed identification of final products were performed for the first time. The quantum yield of CBZ photodegradation (282 nm) is about 0.1% and 0.18% in air-equilibrated and argon-saturated solutions. The primary stage is photoionization with the formation of CBZ cation radical followed by a rapid nucleophilic attack by a solvent molecule. The primary photoproducts are 10-oxo-9-hydro-carbamazepine, 9-formylacridine-10(9H)-carboxamide (a result of ring contraction) and various isomers of hydroxylated CBZ. Prolonged irradiation results to accumulation of acridine derivatives, which should lead to an increase of the toxicity of photolyzed CBZ solutions. The obtained results may be important for understanding the fate of tricyclic antidepressants in processes of UVC disinfection and in natural waters under action of sunlight.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138652DOI Listing

Publication Analysis

Top Keywords

tricyclic antidepressant
8
antidepressant carbamazepine
8
cbz
5
view mechanism
4
mechanism photodegradation
4
photodegradation tricyclic
4
carbamazepine aqueous
4
aqueous solutions
4
solutions mechanism
4
mechanism direct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!