Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem-cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and pancreas from childhood and adult donors for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal gene regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a transient, previously unrecognized, serotonin-producing pre-β cell population in fetal pancreas, arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β cell maturation and identify sex hormones as drivers of β cell proliferation in childhood. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem-cell-derived islets and a framework for manipulating cell identities and maturity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175223 | PMC |
http://dx.doi.org/10.1016/j.devcel.2023.03.011 | DOI Listing |
J Biomed Sci
January 2025
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.
View Article and Find Full Text PDFContext: Anemia is a medical condition resulting from a reduction in the number of red blood cells below the reference range. It is a major public health problem, particularly among adolescents, as it can have negative effects on cognitive performance, growth and reproduction. This study aims to assess the determinants of anemia among adolescents in schools in the city of Douala.
View Article and Find Full Text PDFJ Transl Med
January 2025
Allen Institute for Immunology, Seattle, WA, USA.
Background: The field of single cell technologies has rapidly advanced our comprehension of the human immune system, offering unprecedented insights into cellular heterogeneity and immune function. While cryopreserved peripheral blood mononuclear cell (PBMC) samples enable deep characterization of immune cells, challenges in clinical isolation and preservation limit their application in underserved communities with limited access to research facilities. We present CryoSCAPE (Cryopreservation for Scalable Cellular And Proteomic Exploration), a scalable method for immune studies of human PBMC with multi-omic single cell assays using direct cryopreservation of whole blood.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
College of Pharmacy, The Islamic University, Najaf, Iraq.
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!