Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current dogma is that chemoattractants G protein-coupled receptors activate β phospholipase C while receptor tyrosine kinases activate γ phospholipase C. Here, we show that chemoattractant/G protein-coupled receptor-mediated membrane recruitment of γ2 phospholipase C constitutes G protein-coupled receptor-mediated phospholipase C signaling and is essential for neutrophil polarization and migration during chemotaxis. In response to a chemoattractant stimulation, cells lacking γ2 phospholipase C (plcg2kd) displayed altered dynamics of diacylglycerol production and calcium response, increased Ras/PI3K/Akt activation, elevated GSK3 phosphorylation and cofilin activation, impaired dynamics of actin polymerization, and, consequently, defects in cell polarization and migration during chemotaxis. The study reveals a molecular mechanism of membrane targeting of γ2 phospholipase C and the signaling pathways by which γ2 phospholipase C plays an essential role in neutrophil chemotaxis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jleuko/qiad043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!