Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Population-based breast cancer screening using mammography as the gold standard imaging modality has been in clinical practice for over 40 years. However, the limitations of mammography in terms of sensitivity and high false-positive rates, particularly in high-risk women, challenge the indiscriminate nature of population-based screening. Additionally, in light of expanding research on new breast cancer risk factors, there is a growing consensus that breast cancer screening should move toward a risk-adapted approach. Recent advancements in breast imaging technology, including contrast material-enhanced mammography (CEM), ultrasound (US) (automated-breast US, Doppler, elastography US), and especially magnetic resonance imaging (MRI) (abbreviated, ultrafast, and contrast-agent free), may provide new opportunities for risk-adapted personalized screening strategies. Moreover, the integration of artificial intelligence and radiomics techniques has the potential to enhance the performance of risk-adapted screening. This review article summarizes the current evidence and challenges in breast cancer screening and highlights potential future perspectives for various imaging techniques in a risk-adapted breast cancer screening approach. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.28731 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!