AI Article Synopsis

  • Acute lung injury (ALI) is a serious condition in critically ill patients with no efficient treatment, prompting research into nano-curcumin (nano-CU) as a potential protective agent against lung damage caused by paraquat (PQ) exposure.
  • In a study with rats, various treatment groups were exposed to PQ and later treated with either nano-CU, pioglitazone, dexamethasone, or combinations, revealing that nano-CU significantly improved lung health indicators compared to untreated controls.
  • The results showed that nano-CU effectively reduced lung damage similar to other treatments and exhibited a synergistic effect when combined with pioglitazone, indicating a possible mechanism involving PPAR-γ receptor activation.

Article Abstract

Background: Acute lung injury (ALI) remains a significant source of morbidity and mortality in critically ill patients and currently there is no efficient therapy for this condition. The aim of this research was to evaluate the protective activity of nano-curcumin (nano-CU) as a natural anti-inflammatory and antioxidant agent, against inhaled paraquat (PQ)-induced lung injury.

Methods: One group of rats was exposed to saline (control group, Ctrl) and six groups to PQ aerosol (54 mg/m on alternate days 8 times, each time for 30 min) treated with drinking water alone (group PQ), 2 and 8 mg/kg nano-CU (nano + CU(L) and nano + CU(H)), 5 mg/kg pioglitazone (PIO), nano-CU(L) + PIO or 0.03 mg/kg dexamethasone (Dexa) for 16 days after PQ exposure period. PIO and Dexa were intraperitoneal (ip) injected and nano-CU was administered orally (po), (6 rats in each group).

Results: In the PQ group, total and differential WBC counts, malondialdehyde (MDA) in the bronchoalveolar lavage fluid (BALF), interferon gamma (INF-γ) and interleukin 10 (IL-10) levels in the lung tissues, lung pathological changes, and tracheal responsiveness were increased but the BALF thiol, catalase (CAT) and superoxide dismutase (SOD) levels were reduced. In treated groups with nano-CU(H) and PIO + nano-CU(L), all measured variables, in Dexa and nano-CU(L) treated groups, most variables and in the PIO group only a few variables were improved. The improvement of most variables in the PIO + nano-CU(L) group was significantly higher than in the PIO and nano-CU(L) groups alone.

Conclusions: Nano-CU ameliorated lung damage induced by inhaled PQ similar to dexa and a synergic effect between nano-CU and PIO was observed, suggesting, a possible PPAR-γ receptor-mediated effect of curcumin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43440-023-00483-3DOI Listing

Publication Analysis

Top Keywords

lung injury
8
treated groups
8
lung
6
group
6
nano-cu
5
pio
5
evaluation nano-curcumin
4
nano-curcumin inhaled
4
inhaled paraquat-induced
4
paraquat-induced lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!