The H3N2 canine influenza virus - which originally came from birds - is evolving to become more transmissible between dogs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089655PMC
http://dx.doi.org/10.7554/eLife.86051DOI Listing

Publication Analysis

Top Keywords

avian influenza
4
influenza viruses
4
viruses spill
4
spill mammals
4
mammals h3n2
4
h3n2 canine
4
canine influenza
4
influenza virus
4
virus originally
4
originally birds
4

Similar Publications

A Susceptible Cell-Selective Delivery (SCSD) of mRNA-Encoded Cas13d Against Influenza Infection.

Adv Sci (Weinh)

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.

To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.

View Article and Find Full Text PDF

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

We isolated three genotypes of highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.

View Article and Find Full Text PDF

Asymptomatic infection and antibody prevalence to co-occurring avian influenza viruses vary substantially between sympatric seabird species following H5N1 outbreaks.

Sci Rep

January 2025

Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.

Emerging infectious diseases are of major concern to animal and human health. Recent emergence of high pathogenicity avian influenza virus (HPAIV) (H5N1 clade 2.3.

View Article and Find Full Text PDF

Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!