Metal-air batteries, which are economical and ecological alternatives to Li-ion batteries, have become an important energy storage system. In this study, bimetallic oxides of widely accepted transition metal oxides like MnCoO and NiFeO have been explored to fabricate an efficient rechargeable Zn-air battery. The synthesis of these materials involves a single step direct decomposition of constituent metallic salts using polyvinyl pyrrolidone as a stabilizer cum nanostructure growth modifier by a simple open-air spray pyrolysis. The well characterized materials are used as cathodes in the assembly of a Zn-air battery that delivers a decent specific capacity of 780.1 mA h g. It also offers long term charge-discharge for more than 900 cycles with a week-long break-free operational stability under a small voltage gap (0.65-0.73 V). Finally, a unique and compact quad-cell solid state battery design has been introduced using these cathodes and chemically modified anodes resembling the commercial lithium-ion mobile phone battery. This tiny portable Zn-air battery displays an open circuit potential (OCP) of 4.46 V.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp06035cDOI Listing

Publication Analysis

Top Keywords

zn-air battery
12
rechargeable zn-air
8
compact quad-cell
8
battery design
8
battery
6
manganese-cobalt oxide
4
oxide effective
4
effective bifunctional
4
bifunctional cathode
4
cathode rechargeable
4

Similar Publications

Robust Spray Combustion Enabling Hierarchical Porous Carbon-Supported FeCoNi Alloy Catalyst for Zn-Air Batteries.

ACS Appl Mater Interfaces

January 2025

National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.

Rechargeable Zn-air batteries (RZABs) are poised for industrial application, yet they require low-cost, high-performance catalysts that efficiently facilitate both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The pivotal challenge lies in designing multimetal active sites and optimizing the carbon skeleton structure to modulate catalyst activity. In this study, we introduce a novel hierarchical porous carbon-supported FeCoNi bifunctional catalyst, synthesized via a spray combustion method.

View Article and Find Full Text PDF

LaSrMnO Perovskites for Oxygen Reduction in Zn-Air Batteries: Enhanced by Glucose Regulation.

ACS Appl Mater Interfaces

January 2025

School of Mechanical Science and Engineering, Northeast Petroleum University, 199 Fazhan Road, Daqing 163318, P. R. China.

The actual ORR catalytic activity of perovskite materials is significantly lower than the theoretical value due to their inherently low specific surface area and significant segregation of inactive oxygen ions on the surface. This study reports a sol-gel synthesis approach that employs glucose as a structural regulator to fabricate LaSrMnO (LSM) perovskites. Compared with the original LSM (12.

View Article and Find Full Text PDF

Improved performances toward electrochemical carbon dioxide and oxygen reductions by iron-doped stannum nanoparticles.

Nanoscale

January 2025

MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

The CO reduction reaction (CORR) and oxygen reduction reaction (ORR) show great promise for expanding the use of renewable energy sources and fostering carbon neutrality. Sn-based catalysts show CORR activity; however, they have been rarely reported in the ORR. Herein, we prepared a nitrogen-carbon structure loaded with Fe-doped Sn nanoparticles (Fe-Sn/NC), which has good ORR and CORR activity.

View Article and Find Full Text PDF

Integration of different active sites by heterostructure engineering is pivotal to optimize the intrinsic activities of an oxygen electrocatalyst and much needed to enhance the performance of rechargeable Zn-air batteries (ZABs). Herein, a biphasic nanoarchitecture encased in in situ grown N-doped graphitic carbon (MnO/Co-NGC) with heterointerfacial sites are constructed. The density functional theory model reveals formation of lattice oxygen bridged heterostructure with pyridinic nitrogen atoms anchored Co species, which facilitate adsorption of oxygen intermediates.

View Article and Find Full Text PDF

Two-dimensional ZIF-L derived dual Fe/FeN sites for synergistic efficient oxygen reduction in alkaline and acid media.

J Colloid Interface Sci

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 China; Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170 Thailand. Electronic address:

Fe-N-C catalysts have emerged as the most promising alternatives to commercial Pt/C catalysts for oxygen reduction reaction (ORR) due to their cost-effectiveness and favorable activity. Herein, a dual-site Fe/FeN-NC catalyst was synthesized via a green, in situ doping strategy using two-dimensional Fe-doped ZIF-L as a nitrogen-rich precursor. The catalyst integrated Fe nanoparticles (NPs) and FeN sites anchored on carbon nanotubes, intertwined with nitrogen-doped porous carbon nanosheets, achieving a high active site density and graphitisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!