Advanced IR vibrational spectroscopic techniques, , using a coupled gravimetric-IR surface analyzer (AGIR) and a high-throughput IR cell (Carroucell), have been used for the quantitative studies of the adsorption and coadsorption of ethanol and water on MFI zeolites with different Si/Al ratios. The AGIR coupling is a powerful tool for the accurate determination of the molar adsorption coefficients during coadsorption experiments since their evaluation is based on the measurement of the exact amount of adsorbed species. The use of the Carroucell set up allows characterizing all the samples simultaneously, strictly in the same gaseous and temperature environment. The molar absorption coefficients of pure adsorbed ethanol and water are determined: their values are constant whatever the Si/Al ratio of the MFI zeolites. Moreover, these coefficients are found to be identical in the case of the water-ethanol coadsorption experiments. Their use allows obtaining the exact quantity of each adsorbate specie in the binary system. At low partial pressures, the unary water adsorption experiments suggest that the amount of adsorbed water results mainly from the preferential adsorption on Brønsted acid sites in tetrameric clusters. In contrast, the adsorption of EtOH occurs on both silanol groups and Brønsted acid sites (BASs). The effect of the Si/Al ratio is only observed at relatively low partial pressures. The effect of the Si/Al ratio on the ethanol adsorption capacity is also investigated. This study directs the choice of an appropriate zeolite once it is used in membranes for drying ethanol.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp00549fDOI Listing

Publication Analysis

Top Keywords

si/al ratio
16
mfi zeolites
12
ethanol water
8
coadsorption experiments
8
amount adsorbed
8
low partial
8
partial pressures
8
brønsted acid
8
acid sites
8
adsorption
6

Similar Publications

To improve the utilization rates of soda residue (SR) and fly ash (FA), reduce environmental pollution, and enhance the mechanical properties of marine clay (MC), this study proposes mixing SR, FA, and MC with cement and /or lime to prepare soda residue-fly ash stabilized soil (SRFSS). Using an orthogonal design for the proportions, the study analyzes the compaction performance, unconfined compressive strength (UCS), and shear strength of SRFSS. The influence of various factors on the mechanical properties of SRFSS was investigated through range and variance analyses.

View Article and Find Full Text PDF

Objectives: The antimicrobial, oxidative activities, and ecotoxicity of synthesized silver-loaded zeolites (X and ZSM-5(MFI), Si-to-Al ratios 12 and 25) were studied, linking antimicrobial properties to material structure and released active silver species.

Methods: The materials were characterized by SEM, EDX, TEM, and XRPD. All materials, with a silver content of 1-3%wt for the Ss and about 35%wt for the X-zeolites, were tested against and .

View Article and Find Full Text PDF

Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to their favorable physical and chemical properties-the high content of aluminosilicate minerals (60-90%)-flotation tailings can be effectively treated and reused through geopolymerization technology, thereby adding value to this waste.

View Article and Find Full Text PDF

Alkaline fusion is a pivotal process influencing the cost of synthesizing zeolite from coal gangue. This study examined the effects of alkaline fusion temperature ( ), treatment duration ( ) and the NaOH/coal gangue weight ratio ( ) on the composition and properties of the products, as well as their adsorption capacities for Cd ( ) and Pb ( ). Response surface methodology (RSM) was employed to analyze the interactions among these factors, and the adsorption mechanisms for Cd and Pb were investigated using X-ray diffraction, scanning electron microscopy-EDS, Fourier transform infrared, X-ray photoelectron spectroscopy, and N adsorption-desorption techniques.

View Article and Find Full Text PDF

Effects of Multiple Factors on the Compressive Strength of Porous Ceramsite Prepared from Secondary Aluminum Dross.

Materials (Basel)

November 2024

State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Aluminum is one of the most in-demand nonferrous metals in the world. The secondary aluminum dross (SAD) produced during aluminum smelting is a type of solid waste that urgently requires disposal. SAD, municipal solid waste incineration fly ash, and bottom slag were used as raw materials to prepare porous ceramsite in a laboratory in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!